43 research outputs found

    Optical detection of distal lung enzyme activity in human inflammatory lung disease.

    Get PDF
    Objective and Impact Statement. There is a need to develop platforms delineating inflammatory biology of the distal human lung. We describe a platform technology approach to detect in situ enzyme activity and observe drug inhibition in the distal human lung using a combination of matrix metalloproteinase (MMP) optical reporters, fibered confocal fluorescence microscopy (FCFM), and a bespoke delivery device. Introduction. The development of new therapeutic agents is hindered by the lack of in vivo in situ experimental methodologies that can rapidly evaluate the biological activity or drug-target engagement in patients. Methods. We optimised a novel highly quenched optical molecular reporter of enzyme activity (FIB One) and developed a translational pathway for in-human assessment. Results. We demonstrate the specificity for matrix metalloproteases (MMPs) 2, 9, and 13 and probe dequenching within physiological levels of MMPs and feasibility of imaging within whole lung models in preclinical settings. Subsequently, in a first-in-human exploratory experimental medicine study of patients with fibroproliferative lung disease, we demonstrate, through FCFM, the MMP activity in the alveolar space measured through FIB One fluorescence increase (with pharmacological inhibition). Conclusion. This translational in situ approach enables a new methodology to demonstrate active drug target effects of the distal lung and consequently may inform therapeutic drug development pathways

    Adherence to once-daily and twice-daily direct acting antiviral therapy for hepatitis C infection among people with recent injection drug use or current opioid agonist therapy

    Get PDF
    BACKGROUND This study investigated adherence and associated factors among people with recent injection drug use (IDU) or current opioid agonist therapy (OAT) and compared once-daily to twice-daily hepatitis C virus (HCV) direct-acting antiviral (DAA) therapy. METHODS SIMPLIFY and D3FEAT are international, multicenter studies that recruited participants with recent IDU (previous 6 months; SIMPLIFY, D3FEAT) or current OAT (D3FEAT) between March 2016 and February 2017 in 8 countries. Participants received sofosbuvir/velpatasvir (once daily; SIMPLIFY) or paritaprevir/ritonavir/ombitasvir, dasabuvir (twice daily) ± ribavirin (D3FEAT) for 12 weeks administered in electronic blister packs. We evaluated overall adherence (proportion of prescribed doses taken) and nonadherence (<90% adherent) between dosing patterns. RESULTS Of 190 participants, 184 (97%) completed treatment. Median adherence was 92%, with higher adherence among those receiving once-daily vs twice-daily therapy (94% vs 87%, P = .005). Overall, 40% of participants (n = 76) were nonadherent (<90% adherent). Recent stimulant injecting (odds ratio [OR], 2.48 [95% confidence interval {CI}, 1.28-4.82]), unstable housing (OR, 2.18 [95% CI, 1.01-4.70]), and twice-daily dosing (OR, 2.81 [95% CI, 1.47-5.36]) were associated with nonadherence. Adherence decreased during therapy. Sustained virologic response was high in nonadherent (89%) and adherent populations (95%, P = .174), with no difference in SVR between those who did and did not miss 7 consecutive doses (92% vs 93%, P = .897). CONCLUSIONS This study demonstrated high adherence to once- and twice-daily DAA therapy among people with recent IDU or currently receiving OAT. Nonadherence described did not impact treatment outcomes, suggesting forgiveness to nonadherence

    FLIM FRET Technology for Drug Discovery: Automated Multiwell-Plate High-Content Analysis, Multiplexed Readouts and Application in Situ**

    Get PDF
    A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Addressing the dichotomy between individual and societal approaches to personalised medicine in oncology

    Get PDF
    Academic, industry, regulatory leaders and patient advocates in cancer clinical research met in November 2018 at the Innovation and Biomarkers in Cancer Drug Development meeting in Brussels to address the existing dichotomy between increasing calls for personalised oncology approaches based on individual molecular profiles and the need to make resource and regulatory decisions at the societal level in differing health-care delivery systems around the globe. Novel clinical trial designs, the utility and limitations of real-world evidence (RWE) and emerging technologies for profiling patient tumours and tumour-derived DNA in plasma were discussed. While randomised clinical trials remain the gold standard approach to defining clinical utility of local and systemic therapeutic interventions, the broader adoption of comprehensive tumour profiling and novel trial designs coupled with RWE may allow patient and physician autonomy to be appropriately balanced with broader assessments of safety and overall societal benefit. (C) 2019 Published by Elsevier Ltd

    Repetitive Behavior in Rubinstein–Taybi Syndrome:Parallels with Autism Spectrum Phenomenology

    Get PDF
    Syndrome specific repetitive behavior profiles have been described previously. A detailed profile is absent for Rubinstein–Taybi syndrome (RTS). The Repetitive Behaviour Questionnaire and Social Communication Questionnaire were completed for children and adults with RTS (N = 87), Fragile-X (N = 196) and Down (N = 132) syndromes, and individuals reaching cut-off for autism spectrum disorder (N = 228). Total and matched group analyses were conducted. A phenotypic profile of repetitive behavior was found in RTS. The majority of behaviors in RTS were not associated with social-communication deficits or degree of disability. Repetitive behavior should be studied at a fine-grained level. A dissociation of the triad of impairments might be evident in RTS

    Diverse Profiles of Anxiety Related Disorders in Fragile X, Cornelia de Lange and Rubinstein–Taybi Syndromes

    Get PDF
    Anxiety disorders are heightened in specific genetic syndromes in comparison to intellectual disability of heterogeneous aetiology. In this study, we described and contrasted anxiety symptomatology in fragile X (FXS), Cornelia de Lange (CdLS) and Rubinstein–Taybi syndromes (RTS), and compared the symptomatology to normative data for typically-developing children and children diagnosed with an anxiety disorder. Scores did not differ between children diagnosed with an anxiety disorder and (a) participants with FXS on social phobia, panic/agoraphobia, physical injury fears, and obsessive–compulsive subscales (b) participants with CdLS on separation anxiety, generalized anxiety, panic/agoraphobia, physical injury fears and obsessive–compulsive subscales, and (c) participants with RTS on panic/agoraphobia and obsessive–compulsive subscales. The results highlight divergent profiles of anxiety symptomatology between these groups
    corecore