1,519 research outputs found

    A monetary reward alters pacing but not performance in competitive cyclists

    Get PDF
    Money has frequently been used as an extrinsic motivator since it is assumed that humans are willing to invest more effort for financial reward. However, the influence of a monetary reward on pacing and performance in trained athletes is not well-understood. Therefore, the aim of this study was to analyse the influence of a monetary reward in well-trained cyclists on their pacing and performance during short and long cycling time trials (TT). Twentythree cyclists (6 ♀, 17 ♂) completed 4 self-paced time trials (TTs, 2 short: 4 km and 6 min; 2 long: 20 km and 30 min); in a randomized order. Participants were separated into parallel, non-randomized “rewarded” and “non-rewarded” groups. Cyclists in the rewarded group received a monetary reward based on highest mean power output across all TTs. Cyclists in the non-rewarded group did not receive a monetary reward. Overall performance was not significantly different between groups in short or long TTs (p \u3e 0.48). Power output showed moderatly lower effect sizes at comencement of the short TTs (Pmeandiff = 36.6 W; d \u3e 0.44) and the 20 km TT (Pmeandiff = 22.6 W; d = 0.44) in the rewarded group. No difference was observed in pacing during the 30 min TT (p = 0.95). An external reward seems to have influenced pacing at the commencement of time trials. Participants in the non-rewarded group adopted a typical parabolic shaped pattern, whereas participants in the rewarded group started trials more conservatively. Results raise the possibility that using money as an extrinsic reward may interfere with regulatory processes required for effective pacing

    Confronting cold dark matter predictions with observed galaxy rotations

    Get PDF
    The rich statistics of galaxy rotations as captured by the velocity function (VF) provide invaluable constraints on galactic baryon physics and the nature of dark matter (DM). However, the comparison of observed galaxy rotations against cosmological models is prone to subtle caveats that can easily lead to misinterpretations. Our analysis reveals full statistical consistency between similar to 5000 galaxy rotations, observed in line-of-sight projection, and predictions based on the standard cosmological model (Lambda CDM) at the mass-resolution of the Millennium simulation (H I line-based circular velocities above similar to 50 km s(-1)). Explicitly, the H I linewidths in the H I Parkes All Sky Survey (HIPASS) are found to be consistent with those in S-3-SAX, a post-processed semi-analytic model for the Millennium simulation. Previously found anomalies in the VF can be plausibly attributed to (1) the mass-limit of the Millennium simulation, (2) confused sources in HIPASS, (3) inaccurate inclination measurements for optically faint sources, and (4) the non-detectability of gas-poor early-type galaxies. These issues can be bypassed by comparing observations and models using linewidth source counts rather than VFs. We investigate if and how well such source counts can constrain the temperature of DM

    Interferometric Constraints on Quantum Geometrical Shear Noise Correlations

    Get PDF
    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches for faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.Comment: Matches the journal accepted versio

    A Key Role for Similarity in Vicarious Reward

    Get PDF
    Humans appear to have an inherent prosocial tendency toward one another in that we often take pleasure in seeing others succeed. This fact is almost certainly exploited by game shows, yet why watching others win elicits a pleasurable vicarious rewarding feeling in the absence of personal economic gain is unclear. One explanation is that game shows use contestants who have similarities to the viewing population, thereby kindling kin-motivated responses (for example, prosocial behavior). Using a game show–inspired paradigm, we show that the interactions between the ventral striatum and anterior cingulate cortex subserve the modulation of vicarious reward by similarity, respectively. Our results support studies showing that similarity acts as a proximate neurobiological mechanism where prosocial behavior extends to unrelated strangers

    A near-infrared variability study in the cloud IC1396W: low star-forming efficiency and two new eclipsing binaries

    Full text link
    Identifying the population of young stellar objects (YSOs) in high extinction regions is a prerequisite for studies of star formation. This task is not trivial, as reddened background objects can be indistinguishable from YSOs in near-infrared colour-colour diagrams. Here we combine deep JHK photometry with J- and K-band lightcurves, obtained with UKIRT/WFCAM, to explore the YSO population in the dark cloud IC1396W. We demonstrate that a colour-variability criterion can provide useful constraints on the star forming activity in embedded regions. For IC1396W we find that a near-infrared colour analysis alone vastly overestimates the number of YSOs. In total, the globule probably harbours not more than ten YSOs, among them a system of two young stars embedded in a small (~10000 AU) reflection nebula. This translates into a star forming efficiency SFE of ~1%, which is low compared with nearby more massive star forming regions, but similar to less massive globules. We confirm that IC1396W is likely associated with the IC1396 HII region. One possible explanation for the low SFE is the relatively large distance to the ionizing O-star in the central part of IC1396. Serendipitously, our variability campaign yields two new eclipsing binaries, and eight periodic variables, most of them with the characteristics of contact binaries.Comment: 13 pages, 10 figures, MNRAS, in pres

    Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent protein kinase I

    Get PDF
    The molecular basis for cerebellar plasticity and motor learning remains controversial. Cerebellar Purkinje cells (PCs) contain a high concentration of cGMP-dependent protein kinase type I (cGKI). To investigate the function of cGKI in long-term depression (LTD) and cerebellar learning, we have generated conditional knockout mice lacking cGKI selectively in PCs. These cGKI mutants had a normal cerebellar morphology and intact synaptic calcium signaling, but strongly reduced LTD. Interestingly, no defects in general behavior and motor performance could be detected in the LTD-deficient mice, but the mutants exhibited an impaired adaptation of the vestibulo-ocular reflex (VOR). These results indicate that cGKI in PCs is dispensable for general motor coordination, but that it is required for cerebellar LTD and specific forms of motor learning, namely the adaptation of the VOR

    Interstellar and Circumstellar Optical & Ultraviolet Lines Towards SN1998S

    Get PDF
    We have observed SN1998S which exploded in NGC3877, with the UES at the WHT and with the E230M echelle of STIS aboard HST. Both data sets were obtained at two seperate epochs. From our own Galaxy we detect interstellar absorption lines of CaII, FeII, MgI, and probably MnII from the edge of the HVC Complex M. We derive gas-phase abundances which are very similar to warm disk clouds in the local ISM, which we believe argues against the HVC material having an extragalactic origin. At the velocity of NGC3877 we detect interstellar MgI, MgII, MnII, CaII, & NaI. Surprisingly, one component is seen to increase by a factor of ~1 dex in N(NaI) and N(MgI) between the two epochs over which the data were taken. Unusually, our data also show narrow Balmer, HeI, and metastable FeII P-Cygni profiles, with a narrow absorption component superimposed on the bottom of the profile's absorption trough. Both the broad and narrow components of the optical lines are seen to increase substantially in strength between the two epochs. Most of the low-ionization absorption can be understood in terms of gas co-rotating with the disk of NGC 3877, providing the SN is at the back of an HI disk with a similar thickness to that of our own Galaxy. However, the variable absorption components, and the classic P-Cygni emission profiles, most likely arise in slow-moving circumstellar outflows originating from the red supergiant progenitor of SN1998S. [Abridged.]Comment: Accepted by ApJ, 26 pages including 9 figure

    Generation of folk song melodies using Bayes transforms

    Get PDF
    The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models
    corecore