249 research outputs found

    Tracking Cluster Debris (TraCD) – I. Dissolution of clusters and searching for the solar cradle

    Get PDF
    The capability to reconstruct dissolved stellar systems in dynamical and chemical space is a key factor in improving our understanding of the evolution of the Milky Way. Here we concentrate on the dynamical aspect and given that a significant portion of the stars in the Milky Way have been born in stellar associations or clusters that have lived a few Myr up to several Gyr, we further restrict our attention to the evolution of star clusters. We have carried out our simulations in two steps: (1) we create a simulation of dissolution and mixing processes which yields a close fit to the present-day Milky Way dynamics and (2) we have evolved three sets of stellar clusters with masses of 400, 1000 and 15 000 M⊙ to dissolution. The birth location of these sets was 4, 6, 8 and 10 kpc for the 400 and 1000 M⊙ clusters and 4, 6, 8, 10 and 12 kpc for the 15 000 M⊙. We have focused our efforts on studying the state of the escapers from these clusters after 4.5 Gyr of evolution with particular attention to stars that reach the solar annulus, i.e. 7.5 ≤ Rgc ≤ 8.5 kpc. We give results for solar twins and siblings over a wide range of radii and cluster masses for two dissolution mechanisms. From kinematics alone, we conclude that the Sun was ∼50 per cent more likely to have been born near its current Galactocentric radius, rather than have migrated (radially) ∼2 kpc since birth. We conclude our analysis by calculating magnitudes and colours of our single stars for comparison with the samples that the Gaia, Gaia-ESO and GALAH-AAO surveys will obtain. In terms of reconstructing dissolved star clusters, we find that on short time-scales we cannot rely on kinematic evolution alone and thus it will be necessary to extend our study to include information on chemical space

    The fates of massive stars: exploring uncertainties in stellar evolution with METISSE

    Full text link
    In the era of advanced electromagnetic and gravitational wave detectors, it has become increasingly important to effectively combine and study the impact of stellar evolution on binaries and dynamical systems of stars. Systematic studies dedicated to exploring uncertain parameters in stellar evolution are required to account for the recent observations of the stellar populations. We present a new approach to the commonly used Single-Star Evolution (SSE) fitting formulae, one that is more adaptable: Method of Interpolation for Single Star Evolution (METISSE). It makes use of interpolation between sets of pre-computed stellar tracks to approximate evolution parameters for a population of stars. We have used METISSE with detailed stellar tracks computed by the Modules for Experiments in Stellar Astrophysics (MESA), Bonn Evolutionary Code (BEC) and Cambridge STARS code. METISSE better reproduces stellar tracks computed using the STARS code compared to SSE, and is on average three times faster. Using stellar tracks computed with MESA and BEC, we apply METISSE to explore the differences in the remnant masses, the maximum radial expansion, and the main-sequence lifetime of massive stars. We find that different physical ingredients used in the evolution of stars, such as the treatment of radiation dominated envelopes, can impact their evolutionary outcome. For stars in the mass range 9 to 100 M⊙_\odot, the predictions of remnant masses can vary by up to 20 M⊙_\odot, while the maximum radial expansion achieved by a star can differ by an order of magnitude between different stellar models.Comment: Accepted for publication in MNRA

    A brief report on the development of a theoretically-grounded intervention to promote patient autonomy and self-management of physiotherapy patients: Face validity and feasibility of implementation

    Get PDF
    Background Clinical practice guidelines for the treatment of low back pain suggest the inclusion of a biopsychosocial approach in which patient self-management is prioritized. While many physiotherapists recognise the importance of evidence-based practice, there is an evidence practice gap that may in part be due to the fact that promoting self-management necessitates change in clinical behaviours. Evidence suggests that a patient’s motivation and maintenance of self-management behaviours can be positively influenced by the clinician’s use of an autonomy supportive communication style. Therefore, the aim of this study was to develop and pilot-test the feasibility of a theoretically derived implementation intervention to support physiotherapists in using an evidence-based autonomy supportive communication style in practice for promoting patient self-management in clinical practice. Methods A systematic process was used to develop the intervention and pilot-test its feasibility in primary care physiotherapy. The development steps included focus groups to identify barriers and enablers for implementation, the theoretical domains framework to classify determinants of change, a behaviour change technique taxonomy to select appropriate intervention components, and forming a testable theoretical model. Face validity and acceptability of the intervention was pilot-tested with two physiotherapists and monitoring their communication with patients over a three-month timeframe. Results Using the process described above, eight barriers and enablers for implementation were identified. To address these barriers and enablers, a number of intervention components were selected ranging from behaviour change techniques such as, goal-setting, self-monitoring and feedback to appropriate modes of intervention delivery (i.e. continued education meetings and audit and feedback focused coaching). Initial pilot-testing revealed the acceptability of the intervention to recipients and highlighted key areas for refinement prior to scaling up for a definitive trial. Conclusion The development process utilised in this study ensured the intervention was theory-informed and evidence-based, with recipients signalling its relevance and benefit to their clinical practice. Future research should consider additional intervention strategies to address barriers of social support and those beyond the clinician level

    3D Printed Carbon Fiber Electric Mountain Bike Frame

    Get PDF
    3D printing of carbon fiber composites has been a developing technology for about 5 years, and in this time, Arevo Labs has established itself as a leader in the field. Our team joined forces with Arevo, who sponsored our project as we showcased their new, innovative carbon fiber manufacturing process. To do so, we focused on the conceptual design, analysis, assembly, and material testing of an electric mountain-bike frame printed with Arevo’s continuous carbon fiber printing technology. Our bike consists of the main frame and a chain stay subsystem, which connects the rear wheel to the rest of the frame and interfaces with a suspension system. Understanding how the capabilities of the printer, the properties of the materials, and the typical loading scenarios experienced by mountain bikes all worked together was paramount in analysis, simulation, and design optimization and iteration. Thus, the focus of this project is to design a mountain bike capable of withstanding typical loading patterns with a high level of safety. Further, the team aimed to optimize a bike frame which used the minimal amount of material necessary to reduce weight and cost for the user

    First-principles determination of the phonon-point defect scattering and thermal transport due to fission products in ThO2

    Full text link
    This work presents the first principles calculations of the lattice thermal conductivity degradation due to point defects in thorium dioxide using an alternative solution of the Pierels-Boltzmann transport equation. We have used the non-perturbative Green's function methodology to compute the phonon point defect scattering rates that consider the local distortion around the point defect, including the mass difference changes, interatomic force constants and structural relaxation near the point defects. The point defects considered in the work include the vacancy of thorium and oxygen, substitution of helium, krypton, zirconium, iodine, xenon, in the thorium site, and the three different configuration of the Schottky defects. The results of the phonon-defect scattering rate reveals that among the considered intrinsic defects, the thorium vacancy and helium substitution in the thorium site scatter the phonon most due to substantial changes in the force constant and structural distortions. The scattering of phonons due to the substitutional defects unveils that the zirconium atom scatters phonons the least, followed by xenon, iodine, krypton, and helium. This is contrary to the intuition that the scattering strength follows HeTh > KrTh > ZrTh > ITh > XeTh based on the mass difference. This striking difference in the zirconium phonon scattering is due to the local chemical environment changes. Zirconium is an electropositive element with valency similar to thorium and, therefore, can bond with the oxygen atoms, thus creating less force constant variance compared to iodine, an electronegative element, noble gas helium, xenon, and krypton. These results can serve as the benchmark for the analytical models and help the engineering-scale modeling effort for nuclear design.Comment: 10 page

    Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates

    Get PDF
    We report experimental and theoretical studies of defects producing fixed charge within Al(2)O(3) layers grown by atomic layer deposition (ALD) on In(0.53)Ga(0.47)As(001) substrates and the effects of hydrogen passivation of these defects. Capacitance-voltage measurements of Pt/ALD-Al(2)O(3)/n-In(0.53)Ga(0.47)As suggested the presence of positive bulk fixed charge and negative interfacial fixed charge within ALD-Al(2)O(3). We identified oxygen and aluminum dangling bonds (DBs) as the origin of the fixed charge. First-principles calculations predicted possible passivation of both O and Al DBs, which would neutralize fixed charge, and this prediction was confirmed experimentally; postmetallization forming gas anneal removed most of the fixed charge in ALD-Al(2)O(3). (C) 2010 American Institute of Physics. (doi:10.1063/1.3399776

    Geographic disparity in premature mortality in Ontario, 1992–1996

    Get PDF
    BACKGROUND: Standardized mortality ratios are used to identify geographic areas with higher or lower mortality than expected. This article examines geographic disparity in premature mortality in Ontario, Canada, at three geographic levels of population and considers factors that may underlie variations in premature mortality across geographic areas. All-cause, sex and disease chapter specific premature mortality were analyzed at the regional, district and public health unit level to determine the extent of geographic variation. Standardized mortality ratios for persons aged 0–74 years were calculated to identify geographic areas with significantly higher or lower premature mortality than expected, using Ontario death rates as the basis for the calculation of expected deaths in the local population. Data are also presented from the household component of the 1996/97 National Population Health Survey and from the 1996 Statistics Canada Census. RESULTS: Results showed approximately 20% higher than expected all-cause premature mortality for males and females in the North region. However, disparity in all-cause premature mortality in Ontario was most pronounced at the public health unit level, ranging from 20% lower than expected to 30% higher than expected. Premature mortality disparities were largely influenced by neoplasms, circulatory diseases, injuries and poisoning, respiratory diseases and digestive diseases, which accounted for more than 80% of all premature deaths. Premature mortality disparities were also more pronounced for disease chapter specific mortality. CONCLUSION: Geographic disparities in premature mortality are clearly greater at the small area level. Geographic disparities in premature mortality undoubtedly reflect the underlying distribution of population health determinants such as health related behaviours, social, economic and environmental influences

    Phonon thermal transport in UO2_2 via self-consistent perturbation theory

    Full text link
    Computing thermal transport from first-principles in UO2_2 is complicated due to the challenges associated with Mott physics. Here we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2_2 from first-principles, and we perform enhanced thermal transport computations by evaluating the phonon Green's function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T=600T=600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution

    On The Maximum Mass of Stellar Black Holes

    Full text link
    We present the spectrum of compact object masses: neutron stars and black holes that originate from single stars in different environments. In particular, we calculate the dependence of maximum black hole mass on metallicity and on some specific wind mass loss rates (e.g., Hurley et al. and Vink et al.). Our calculations show that the highest mass black holes observed in the Galaxy M_bh = 15 Msun in the high metallicity environment (Z=Zsun=0.02) can be explained with stellar models and the wind mass loss rates adopted here. To reach this result we had to set Luminous Blue Variable mass loss rates at the level of about 0.0001 Msun/yr and to employ metallicity dependent Wolf-Rayet winds. With such winds, calibrated on Galactic black hole mass measurements, the maximum black hole mass obtained for moderate metallicity (Z=0.3 Zsun=0.006) is M_bh,max = 30 Msun. This is a rather striking finding as the mass of the most massive known stellar black hole is M_bh = 23-34 Msun and, in fact, it is located in a small star forming galaxy with moderate metallicity. We find that in the very low (globular cluster-like) metallicity environment the maximum black hole mass can be as high as M_bh,max = 80 Msun (Z=0.01 Zsun=0.0002). It is interesting to note that X-ray luminosity from Eddington limited accretion onto an 80 Msun black hole is of the order of about 10^40 erg/s and is comparable to luminosities of some known ULXs. We emphasize that our results were obtained for single stars only and that binary interactions may alter these maximum black hole masses (e.g., accretion from a close companion). This is strictly a proof-of-principle study which demonstrates that stellar models can naturally explain even the most massive known stellar black holes.Comment: 15 pages, ApJ accepte
    • …
    corecore