38 research outputs found

    THE MITOGENIC EFFECT OF LIPOPOLYSACCHARIDE ON BONE MARROW-DERIVED MOUSE LYMPHOCYTES : LIPID A AS THE MITOGENIC PART OF THE MOLECULE

    Get PDF
    Lipopolysaccharides with different structure, isolated from different mutant strains of Escherichia coli and Salmonella bacteria, and chemical degradation products of these lipopolysaccharides have been employed to investigate which part of the lipopolysaccharide molecule exerts mitogenic effects on bone marrow-derived mouse lymphocytes. Within the structure of lipopolysaccharide consisting of lipid A, a core polysaccharide, and the O-polysaccharide antigen, lipid A was found to be the mitogenic part. The mitogenic effect of lipid A, consisting of phosphorylated glucosamine disaccharide units with ester- and amide-linked fatty acids, was lost after alkali treatment, which removes ester-linked fatty acids. Insertion of the lipid A portion of lipopolysaccharides into the lipid bilayer of the plasma membranes of bone marrow-derived lymphocytes is discussed as the initial mitogenic action

    TLR9-Dependent and Independent Pathways Drive Activation of the Immune System by Propionibacterium Acnes

    Get PDF
    Propionibacterium acnes is usually a relatively harmless commensal. However, under certain, poorly understood conditions it is implicated in the etiology of specific inflammatory diseases. In mice, P. acnes exhibits strong immunomodulatory activity leading to splenomegaly, intrahepatic granuloma formation, hypersensitivity to TLR ligands and endogenous cytokines, and enhanced resistance to infection. All these activities reach a maximum one week after P. acnes priming and require IFN-γ and TLR9. We report here the existence of a markedly delayed (1–2 weeks), but phenotypically similar TLR9-independent immunomodulatory response to P. acnes. This alternative immunomodulation is also IFN-γ dependent and requires functional MyD88. From our experiments, a role for MyD88 in the IFN-γ-mediated P. acnes effects seems unlikely and the participation of the known MyD88-dependent receptors, including TLR5, Unc93B-dependent TLRs, IL-1R and IL-18R in the development of the alternative response has been excluded. However, the crucial role of MyD88 can partly be attributed to TLR2 and TLR4 involvement. Either of these two TLRs, activated by bacteria and/or endogenously generated ligands, can fulfill the required function. Our findings hint at an innate immune sensitizing mechanism, which is potentially operative in both infectious and sterile inflammatory disorders

    Beneficial or Deleterious Effects of a Preexisting Hypersensitivity to Bacterial Components on the Course and Outcome of Infection

    No full text
    Priming with heat-killed Propionibacterium acnes enhances the sensitivity of mice to lipopolysaccharide (LPS) and other biologically active bacterial components. We show that P. acnes priming has protective and deleterious effects on a subsequent serovar Typhimurium infection. It may result in a complete protection or prolonged survival, or it may accelerate mortality of the infected mice, depending on the number of serovar Typhimurium bacteria administered and on the degree of LPS hypersensitivity at the time of infection. Both effects of P. acnes-induced hypersensitivity are mediated by gamma interferon (IFN-γ) and are based on a differential activation of the innate immune mechanisms which recognize and react against the LPS present in infecting bacteria. In P. acnes-primed mice null for LPS-binding protein (LBP(−/−) mice), the impaired LPS recognition, due to the absence of LBP, resulted in a higher resistance to serovar Typhimurium infection. A similar P. acnes priming of mice had a protective, but no deleterious effect on a subsequent L. monocytogenes infection. This effect was IFN-γ dependent but independent of LBP

    Toll-Like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS Doses

    No full text
    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-α could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-α shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-α doses in TLR4(−/−) but not in TLR2(−/−) mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 μg. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-α, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use
    corecore