7 research outputs found

    Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity

    Get PDF
    Background: Carotid-femoral pulse wave velocity (PWV) is an important measure of arterial stiffness, which is an independent predictor of cardiovascular morbidity and mortality. In this study, we used an integrated genetic, epigenetic and transcriptomics approach to uncover novel molecular mechanisms contributing to PWV. Methods and results: We measured PWV in 1505 healthy twins of European descendent. A genomewide association analysis was performed using standardized residual of the inverse of PWV. We identified one single-nucleotide polymorphism (rs7164338) in the calcium and integrin-binding protein-2 (CIB2) gene on chromosome 15q25.1 associated with PWV [beta = -0.359, standard error (SE) = 0.07, P = 4.8 x 10(-8)]. The same variant was also associated with increased CIB2 expression in leucocytes (beta = 0.034, SE = 0.008, P = 4.95 x 10(-5)) and skin (beta = 0.072, SE = 0.01, P = 2.35 x 10(-9)) and with hypomethylation of the gene promoter (beta = -.899, SE = 0.098, P = 3.63 x 10(-20)). Conclusion: Our data indicate that reduced methylation of the CIB2 promoter in individuals carrying rs7164338 may lead to increased CIB2 expression. Given that CIB2 is thought to regulate intracellular calcium levels, an increase in protein levels may prevent the accumulation of serum calcium and phosphate, ultimately slowing down the process of vascular calcification. This study shows the power of integrating multiple omics to discover novel cardiovascular mechanisms

    Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity

    Get PDF
    Background: Carotid-femoral pulse wave velocity (PWV) is an important measure of arterial stiffness, which is an independent predictor of cardiovascular morbidity and mortality. In this study, we used an integrated genetic, epigenetic and transcriptomics approach to uncover novel molecular mechanisms contributing to PWV. Methods and results: We measured PWV in 1505 healthy twins of European descendent. A genomewide association analysis was performed using standardized residual of the inverse of PWV. We identified one single-nucleotide polymorphism (rs7164338) in the calcium and integrin-binding protein-2 (CIB2) gene on chromosome 15q25.1 associated with PWV [beta = -0.359, standard error (SE) = 0.07, P = 4.8 x 10(-8)]. The same variant was also associated with increased CIB2 expression in leucocytes (beta = 0.034, SE = 0.008, P = 4.95 x 10(-5)) and skin (beta = 0.072, SE = 0.01, P = 2.35 x 10(-9)) and with hypomethylation of the gene promoter (beta = -.899, SE = 0.098, P = 3.63 x 10(-20)). Conclusion: Our data indicate that reduced methylation of the CIB2 promoter in individuals carrying rs7164338 may lead to increased CIB2 expression. Given that CIB2 is thought to regulate intracellular calcium levels, an increase in protein levels may prevent the accumulation of serum calcium and phosphate, ultimately slowing down the process of vascular calcification. This study shows the power of integrating multiple omics to discover novel cardiovascular mechanisms

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK

    No full text
    BACKGROUND: Acute Coronavirus Disease 2019 (COVID-19) has been associated with new-onset cardiovascular disease (CVD) and diabetes mellitus (DM), but it is not known whether COVID-19 has long-term impacts on cardiometabolic outcomes. This study aimed to determine whether the incidence of new DM and CVDs are increased over 12 months after COVID-19 compared with matched controls. METHODS AND FINDINGS: We conducted a cohort study from 2020 to 2021 analysing electronic records for 1,356 United Kingdom family practices with a population of 13.4 million. Participants were 428,650 COVID-19 patients without DM or CVD who were individually matched with 428,650 control patients on age, sex, and family practice and followed up to January 2022. Outcomes were incidence of DM and CVD. A difference-in-difference analysis estimated the net effect of COVID-19 allowing for baseline differences, age, ethnicity, smoking, body mass index (BMI), systolic blood pressure, Charlson score, index month, and matched set. Follow-up time was divided into 4 weeks from index date (“acute COVID-19”), 5 to 12 weeks from index date (“post-acute COVID-19”), and 13 to 52 weeks from index date (“long COVID-19”). Net incidence of DM increased in the first 4 weeks after COVID-19 (adjusted rate ratio, RR 1.81, 95% confidence interval (CI) 1.51 to 2.19) and remained elevated from 5 to 12 weeks (RR 1.27, 1.11 to 1.46) but not from 13 to 52 weeks overall (1.07, 0.99 to 1.16). Acute COVID-19 was associated with net increased CVD incidence (5.82, 4.82 to 7.03) including pulmonary embolism (RR 11.51, 7.07 to 18.73), atrial arrythmias (6.44, 4.17 to 9.96), and venous thromboses (5.43, 3.27 to 9.01). CVD incidence declined from 5 to 12 weeks (RR 1.49, 1.28 to 1.73) and showed a net decrease from 13 to 52 weeks (0.80, 0.73 to 0.88). The analyses were based on health records data and participants’ exposure and outcome status might have been misclassified. CONCLUSIONS: In this study, we found that CVD was increased early after COVID-19 mainly from pulmonary embolism, atrial arrhythmias, and venous thromboses. DM incidence remained elevated for at least 12 weeks following COVID-19 before declining. People without preexisting CVD or DM who suffer from COVID-19 do not appear to have a long-term increase in incidence of these conditions

    Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK

    Get PDF
    Background Acute Coronavirus Disease 2019 (COVID-19) has been associated with new-onset cardiovascular disease (CVD) and diabetes mellitus (DM), but it is not known whether COVID-19 has long-term impacts on cardiometabolic outcomes. This study aimed to determine whether the incidence of new DM and CVDs are increased over 12 months after COVID-19 compared with matched controls. Methods and findings We conducted a cohort study from 2020 to 2021 analysing electronic records for 1,356 United Kingdom family practices with a population of 13.4 million. Participants were 428,650 COVID-19 patients without DM or CVD who were individually matched with 428,650 control patients on age, sex, and family practice and followed up to January 2022. Outcomes were incidence of DM and CVD. A difference-in-difference analysis estimated the net effect of COVID-19 allowing for baseline differences, age, ethnicity, smoking, body mass index (BMI), systolic blood pressure, Charlson score, index month, and matched set. Follow-up time was divided into 4 weeks from index date (“acute COVID-19”), 5 to 12 weeks from index date (“post-acute COVID-19”), and 13 to 52 weeks from index date (“long COVID-19”). Net incidence of DM increased in the first 4 weeks after COVID-19 (adjusted rate ratio, RR 1.81, 95% confidence interval (CI) 1.51 to 2.19) and remained elevated from 5 to 12 weeks (RR 1.27, 1.11 to 1.46) but not from 13 to 52 weeks overall (1.07, 0.99 to 1.16). Acute COVID-19 was associated with net increased CVD incidence (5.82, 4.82 to 7.03) including pulmonary embolism (RR 11.51, 7.07 to 18.73), atrial arrythmias (6.44, 4.17 to 9.96), and venous thromboses (5.43, 3.27 to 9.01). CVD incidence declined from 5 to 12 weeks (RR 1.49, 1.28 to 1.73) and showed a net decrease from 13 to 52 weeks (0.80, 0.73 to 0.88). The analyses were based on health records data and participants’ exposure and outcome status might have been misclassified. Conclusions In this study, we found that CVD was increased early after COVID-19 mainly from pulmonary embolism, atrial arrhythmias, and venous thromboses. DM incidence remained elevated for at least 12 weeks following COVID-19 before declining. People without preexisting CVD or DM who suffer from COVID-19 do not appear to have a long-term increase in incidence of these conditions. Emma Rezel-Potts and colleagues investigate whether the incidence of new diabetes mellitus and cardiovascular diseases are increased over 12 months after Covid-19 compared with matched controls. Author summary Why was this study done? ➢ Acute Coronavirus Disease 2019 (COVID-19) may be associated with cardiovascular complications and disorders of blood glucose. ➢ It is not known whether patients recovering from COVID-19 remain at increased risk of cardiovascular disease (CVD) or diabetes mellitus (DM). ➢ This study aimed to find out whether new diagnoses of DM and CVDs are increased over 12 months after COVID-19 compared with matched control patients who did not have COVID-19. What did the researchers do and find? ➢ We analysed electronic records for 428,650 COVID-19 patients who were matched with 428,650 control patients and followed up to January 2022. We evaluated new diagnoses of DM and CVD up to 12 months after COVID-19 infection. We compared COVID-19 patients with controls and adjusted for baseline differences in risk. ➢ DM diagnoses were increased by 81% in acute COVID-19 and remained elevated by 27% from 4 to 12 weeks after the infection. ➢ Acute COVID-19 was associated with a 6-fold increase in cardiovascular diagnoses overall, including an 11-fold increase in pulmonary embolism, a 6-fold increase in atrial arrythmias, and a 5-fold increase in venous thromboses. CVD diagnoses declined from 4 to 12 weeks after COVID-19 and returned to baseline levels or below from 12 weeks to 1 year after the infection. What do these findings mean? ➢ Acute COVID-19 is associated with increased risk of cardiovascular disorders, but risk generally returns to background levels soon after the infection. ➢ The risk of new DM remains increased for at least 12 weeks following COVID-19 before declining. ➢ Patients recovering from COVID-19 should be advised to consider measures to reduce diabetes risk including healthy diet and taking exercise. ➢ People without preexisting CVD or DM who suffer from COVID-19 do not appear to have a long-term increase in incidence of these conditions
    corecore