21 research outputs found

    Modeling Security Risks at the System Design Stage Alignment of Mal Activity Diagrams and SecureUML to the ISSRM Domain Model

    Get PDF
    Turvatehnika disain on üks olulisi süsteemiarenduse komponente. Ta peaks läbima tervet süsteemiarendusprotsessi. Kahjuks pööratakse talle paljudel juhtudel tähelepanu ainult süsteemi arendamise ja haldamise ajal. Paljud turvalise modelleerimise keeled (näiteks Misuse Case, Secure Tropos) aitavad turvariskejuba nõuete analüüsi etapil hallata. Käesolevas magistritöös vaatleme modelleerimisvahendeid (pahateoskeemid ja SecureUML), mida kasutatakse süsteemi disainil. Täpsemalt, me uurime, kuivõrd need vahendid toetavad infosüsteemide turvariskide haldust (Information Systems Security Risks Management, ISSRM). Töö tulemuseks on tabel, mis seab pahateoskeemid ning SecureUML-keele konstruktsioonid ISSRM domeeni mõistetega omavahel vastavusse. Me põhjendame oma analüüsi ning valideerime saadud tulemusi mitmel illustratiivsel näitel. Me loodame, et saadud tulemused aitavad arendajatel paremini aru saada, kuidas turvariske süsteemi disainietapil arvesse võtta. Peale selle, nende keelte analüüs ühisel kontseptuaalsel taustal annab tulevikus võimaluse neid keeli korraga kasutada ning loodud mudeleid ühest keelest teise teisendada.Security engineering is one of the important concerns during system development. It should be addressed throughout the whole system development process; however in many cases it is often dealt only during system development and maintenance. There are several security modeling languages (e.g, Misuse case, Secure Tropos) that help dealing with security risk management at the requirements stage. In this thesis, we are focusing on the modeling languages (e.g. Mal activity diagrams and SecureUML) that are used to design the system. More specifically we investigate how these languages support information systems security risks management (ISSRM). The outcome of this work is an alignment table between the Mal activity diagrams and SecureUML language constructs to the ISSRM domain model concepts. We ground our analysis and validate the received results on the number of illustrative examples. We hope that our results will help developers to understand how they can consider security risks at the system design stage. In addition we open the way for the interoperability between different modeling languages that are analysed using the same conceptual background, thus, potentially leading to the transformation between these modeling approaches

    Blockchain of Things: Benefits, Challenges and Future Directions

    Get PDF
    As Internet of Things (IoT) technologies become increasingly integrated into our daily lives through a multitude of Internet-enabled devices, the efficient, secure, and cost-effective management of the vast amount of data generated by these devices poses a significant challenge. Blockchain has recently emerged as a promising technique to address this challenge by providing a means to establish trust without relying on a trusted third party. The convergence of blockchain and IoT presents a transformative opportunity to establish a secure and robust mechanism for managing the data generated by IoT devices. It is recognized as the essential missing link for enabling IoT devices to fully harness their benefits. This Special Issue delves into a diverse range of IoT-enabled blockchain-driven solutions that leverage the integration of IoT and blockchain technologies, aiming to explore and advance the intersection of these two innovative technologies.For this Special Issue, we received 19 papers in total, and 11 of them were accepted and published. The authors presented some novel ideas, frameworks, and smart contract vulnerability detection methods to solve many real-world problems. These advanced models not only offer tailored solutions but also contribute significantly to increased efficiency, heightened security, and improved efficiency, highlighting the transformative potential of the integration of IoT and blockchain technology. We extend our heartfelt gratitude to all authors for their valuable contributions to this field

    MalDetConv: Automated Behaviour-based Malware Detection Framework Based on Natural Language Processing and Deep Learning Techniques

    Full text link
    The popularity of Windows attracts the attention of hackers/cyber-attackers, making Windows devices the primary target of malware attacks in recent years. Several sophisticated malware variants and anti-detection methods have been significantly enhanced and as a result, traditional malware detection techniques have become less effective. This work presents MalBehavD-V1, a new behavioural dataset of Windows Application Programming Interface (API) calls extracted from benign and malware executable files using the dynamic analysis approach. In addition, we present MalDetConV, a new automated behaviour-based framework for detecting both existing and zero-day malware attacks. MalDetConv uses a text processing-based encoder to transform features of API calls into a suitable format supported by deep learning models. It then uses a hybrid of convolutional neural network (CNN) and bidirectional gated recurrent unit (CNN-BiGRU) automatic feature extractor to select high-level features of the API Calls which are then fed to a fully connected neural network module for malware classification. MalDetConv also uses an explainable component that reveals features that contributed to the final classification outcome, helping the decision-making process for security analysts. The performance of the proposed framework is evaluated using our MalBehavD-V1 dataset and other benchmark datasets. The detection results demonstrate the effectiveness of MalDetConv over the state-of-the-art techniques with detection accuracy of 96.10%, 95.73%, 98.18%, and 99.93% achieved while detecting unseen malware from MalBehavD-V1, Allan and John, Brazilian, and Ki-D datasets, respectively. The experimental results show that MalDetConv is highly accurate in detecting both known and zero-day malware attacks on Windows devices

    Immutable Autobiography of Smart Cars Leveraging Blockchain Technology

    Get PDF
    The popularity of smart cars is increasing around the world as they offer a wide range of services and conveniences. These smart cars are equipped with a variety of sensors generating a large amount of data, many of which are critical. Besides, there are multiple parties involved in the lifespan of a smart car, such as manufacturers, car owners, government agencies, and third-party service providers who also generate data about the vehicle. In addition to managing and sharing data amongst these entities in a secure and privacy-friendly way which is a great challenge itself, there exists a trust deficit about some types of data as they remain under the custody of the car owner (e.g. satellite navigation and mileage data) and can easily be manipulated. In this paper, we propose a blockchain assisted architecture enabling the owner of a smart car to create an immutable record of every data, called the autobiography of a car, generated within its lifespan. We also explain how the trust about this record is guaranteed by the immutability characteristic of the blockchain. Furthermore, the paper describes how the proposed architecture enables a secure and privacy-preserving mechanism for sharing of smart car data among different parties

    A Policy Framework for Subject-Driven Data Sharing

    Get PDF
    Organizations (e.g., hospitals, university etc.) are custodians of data on their clients and use this information to improve their service. Personal data of an individual therefore ends up hosted under the administration of different data custodians. Individuals (data subjects) may want to share their data with others for various reasons. However, existing data sharing mechanisms provided by the data custodians do not provide individuals enough flexibility to share their data, especially in a cross-domain (data custodian) environment. In this paper, we propose a data sharing policy language and related framework for a data subject to capture their fine-grained data sharing requirements. This proposed language allows the data subject to define data sharing policies that consider context conditions, privacy obligations and re-sharing restrictions. Furthermore, we have implemented a prototype to demonstrate how data subjects can define their data sharing policies and how the policies can be used and enforced at runtime

    Managing health insurance using blockchain technology

    Full text link
    Health insurance plays a significant role in ensuring quality healthcare. In response to the escalating costs of the medical industry, the demand for health insurance is soaring. Additionally, those with health insurance are more likely to receive preventative care than those without health insurance. However, from granting health insurance to delivering services to insured individuals, the health insurance industry faces numerous obstacles. Fraudulent actions, false claims, a lack of transparency and data privacy, reliance on human effort and dishonesty from consumers, healthcare professionals, or even the insurer party itself, are the most common and important hurdles towards success. Given these constraints, this chapter briefly covers the most immediate concerns in the health insurance industry and provides insight into how blockchain technology integration can contribute to resolving these issues. This chapter finishes by highlighting existing limitations as well as potential future directions.Comment: 37 pages, 2 figures, 12 table

    COVID-19 Contact Tracing: Challenges and Future Directions.

    Get PDF
    Contact tracing has become a vital tool for public health officials to effectively combat the spread of new diseases, such as the novel coronavirus disease COVID-19. Contact tracing is not new to epidemiologist rather, it used manual or semi-manual approaches that are incredibly time-consuming, costly and inefficient. It mostly relies on human memory while scalability is a significant challenge in tackling pandemics. The unprecedented health and socio-economic impacts led researchers and practitioners around the world to search for technology-based approaches for providing scalable and timely answers. Smartphones and associated digital technologies have the potential to provide a better approach due to their high level of penetration, coupled with mobility. While data-driven solutions are extremely powerful, the fear among citizens is that information like location or proximity associated with other personal data can be weaponised by the states to enforce surveillance. Low adoption rate of such apps due to the lack of trust questioned the efficacy and demanded researchers to find innovative solution for building digital-trust, and appropriately balancing privacy and accuracy of data. In this paper, we have critically reviewed such protocols and apps to identify the strength and weakness of each approach. Finally, we have penned down our recommendations to make the future contact tracing mechanisms more universally inter-operable and privacy-preserving
    corecore