24 research outputs found

    Modelling of organic rankine cycle for waste heat recovery process in supercritical condition

    Get PDF
    Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet

    Techno-Economic Assessment of Waste Heat Recovery Technologies for the Food Processing Industry

    Get PDF
    The food manufacturing sector is one of the most dominant consumers of energy across the globe. Food processing methods such as drying, baking, frying, malting, roasting, etc. rely heavily on the heat released from burning fossil fuels, mainly natural gas or propane. Less than half of this heat contributes to the actual processing of the product and the remaining is released to the surroundings as waste heat, primarily through exhaust gases at 150 to 250 °C. Recovering this waste heat can deliver significant fuel, cost and CO2 savings. However, selecting an appropriate sink for this waste heat is challenging due to the relatively low source temperature. This study investigates a novel application of gas-to-air low temperature waste heat recovery technology for a confectionary manufacturing process, through a range of experiments. The recovered heat is used to preheat a baking oven’s combustion air at inlet before it enters the fuel-air mixture. The investigated technology is compared with other waste heat recovery schemes involving Regenerative Organic Rankine Cycles (RORC), Vapour Absorption Refrigeration (VAR) and hot water production. The findings indicate that utilising an oven’s exhaust gases to preheat combustion air can deliver up to 33% fuel savings, provided a sufficiently large heat sink in the form of oven combustion air is available. Due to a lower investment cost, the technology also offers a payback period of only 1.57 years, which makes it financially attractive when compared to others. The studied waste heat recovery technologies can deliver a CO2 savings of 28−356 tonnes per year from a single manufacturing site. The modelling and comparison methodology, observations and outcomes of this study can be extended to a variety of low temperature food manufacturing processes

    Techno-economic optimisation of battery storage for grid-level energy services using curtailed energy from wind

    Get PDF
    The increasing integration of renewable energy sources makes balancing an electricity grid challenging due to their intermittency. Renewable energy can be curtailed especially when production exceeds demand or when there are transmission and/or distribution network congestions within a grid. However, curtailment would become unnecessary with battery storage, provided the battery storage has enough available storage capacity, which can store energy during the time of excess generation and in turn discharge it to the grid once the demand is high during peak times. Hence, stored energy from batteries can potentially offset supply from expensive and environmentally harmful peak plants e.g. open/combined cycle gas turbine. We investigated the techno-economic prospects of the utilisation of curtailed energy from the wind with bulk battery storage to replace open and combined cycle gas turbine power plants, by taking the UK as a case study. A techno-economic model to size and optimise a Li-ion type battery was developed. The optimisation aimed to determine at what cost and size the storage can be commercially viable for grid-level energy applications. Results show that under base case assumptions of a 15% day to day curtailment from wind and £200/kWh battery cost, an optimised battery size of 1.25 GWh could supply 285 GWh peak demand per annum and its corresponding net present value of £22.4m, internal rate of return of 1.7% and a payback period of 14 years could be achieved. However, to achieve the internal rate of return of 8%, a minimum hurdle rate for investment, the cost of battery would need to be below £150/kWh. Sensitivity analysis with parameters such as curtailed wind, depth of discharge, battery efficiency, and cost and income of battery shows that all techno-economic parameters considered in this research have a significant impact on the commercial viability of battery storage for grid applications

    Potentials of load-shifting with renewable energy storage: An environmental and economic assessment for the UK

    Get PDF
    The Paris Agreement set targets to limit global warming to less than 2°C above the pre-industrial level to significantly reduce the risks and impacts associated with climate change [1]. Globally, the energy supply sector is responsible for 25% of greenhouse gas (GHG) emissions [2]. In addition to ratifying Paris Agreement, the UK government has adopted legally binding 80% emissions reduction target from 1990 levels by 2050 as outlined in Climate Change Act. The decarbonisation of power supply, along with electrification of heat and transport, are highlighted as key elements of this transition by both policy and academic research [3]–[5]. Storage systems, via the multiple services they offer across the electricity supply chain [6] at different operational scales stand to create system-wide benefits, enhanced flexibility and reliability for effective management of the grid [7]. The potential contributions storage systems can make towards minimizing the carbon intensity of UK grid with high levels of renewables is recognised by the government as well [8]. This study aims i) to determine the amount of load shifting that can be achieved by the combination of current renewable energy mainly wind and solar and UK grid level storage, ii) analyse the amount of renewable energy generation and storage (RES) needed to phase out programmable gas power generation during the periods of peak demand and iii) assess their economic and environmental implications. The environmental impacts considered are the life cycle emissions associated with electricity generation from the UK mix and the production, installation and use of batteries. The analysis will be extended to cover the future energy scenarios

    Techno-environmental analysis of battery storage for grid level energy services

    Get PDF
    With more and more renewable energy sources (RES) going into power grids, the balancing of supply and demand during peak times will be a growing challenge due to the inherent intermittency and unpredictable nature of RES. Grid level batteries can store energy when there is excess generation from wind and solar and discharge it to meet variable peak demand that is currently supplied by combined cycle gas turbine (CCGT) plants in the UK. This paper assesses the potential of battery storage to replace CCGT in responding to variable peak demand for current and future energy scenarios (FES) in the UK from technical and environmental perspectives. Results from technical analysis show that batteries, assuming size is optimised for different supply and demand scenarios proposed by the National Grid, are able to supply 6.04%, 13.5% and 29.1% of the total variable peak demand in 2016, 2020 and 2035, respectively while CCGT plants supply the rest of the demand. Particularly, to phase out CCGT variable generation from the UK grid in 2035, electricity supply from wind and solar needs to increase by 1.33 times their predicted supply in National Grid’s FES. The environmental implications of replacing CCGT by batteries are studied and compared through a simplified life cycle assessment (LCA). Results from LCA studies show that if batteries are used in place of CCGT, it can reduce up to 87% of greenhouse gas emissions and that is an estimated 1.98 MtCO2 eq. for an optimal supply, 29.1%, of variable peak demand in 203

    Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors

    Get PDF
    Currently UK industrial and manufacturing sectors are facing dual challenges of contributing to national 80% reduction targets in CO2 emissions by 2050 (compared to 1990 levels) and improving economic competitiveness in the face of low cost imports. Since energy consumption is the main source of CO2 emissions and directly related to products being manufactured, improving energy efficiency in energy intensive sectors is key to achieve CO2 targets. Energy consumption is unlikely to meet the targets unless energy efficiency opportunities and technologies are fully explored and timely changes are made to business models and policies This study explores potential energy efficiency improvements from three perspectives: system efficiency of steam networks, waste heat recovery technologies and bioenergy/waste utilisation. Two UK energy-intensive sectors, iron and steel, and food and drink, are selected for analysis and discussion. Potential business models for energy efficiency are also reviewed as there are now a variety of energy service companies who can support adoption of appropriate technologies. Furthermore, drivers and barriers to the adoption of energy efficiency technologies are considered in this paper revealing the factors affecting the diffusion of energy efficient and waste heat recovery technologies and their interactions and interdependencies to energy consumptions. Findings show that it is possible to achieve energy consumption reduction in excess of 15% from a technical point of view, however improving energy efficiency in UK industry has been hindered due to some inter-related technical, economic, regulatory and social barriers. The findings help to demonstrate the significant potential for energy efficiency improvement in two industrial sectors, as well as showing the specific types of technologies relevant for different sectoral processes. The range of business models show opportunities for implementation and for developing innovative business models, addressing barriers, and using enablers to accelerate the diffusion of energy efficiency technologies in UK industry

    Waste heat recovery integration options for commercial bakeries in a thermo-economic-environmental perspective

    Get PDF
    In commercial bakeries, a substantial amount of heat is exhausted which is not only a waste of useful resource, but also contributes to higher fuel consumption and carbon emissions, if not recovered. In this study, waste heat from a single oven is considered and five potential heat recovery options are investigated in a techno-economic-environmental perspective to provide essential results for integrating an appropriate technology for waste heat recovery in the commercial bakeries sector. Waste heat recovery options were selected considering the temperature profile, the waste heat source, quality and quantity of heat and the heat energy demand for the various processes in commercial bakeries. Thermodynamic, economic, and environmental models are developed to assess the heat recovery performance, cost savings and emission reduction at both design and off-design conditions. Results show that up to 286 kW of waste heat can be recovered and reused in the case of air pre-heater, which can save up to 161.93 t/year of natural gas and an equivalent cost and emission savings of 93,594/yearand412.5tCO2e/year,respectively.Moreover,theearliestpaybackperiodof0.77yearswasestimatedfortheairpre−heateroptionwithanestimatedcapitalinvestmentcostof 93,594/year and 412.5 tCO2e/year, respectively. Moreover, the earliest payback period of 0.77 years was estimated for the air pre-heater option with an estimated capital investment cost of 71,631, whereas a maximum payback period of 4.59 years was estimated for the electricity generation by the organic Rankine cycle having an estimated capital investment cost of $304,040. These results reveal that air preheating is the most energy-efficient and cost-effective option to recover the waste heat from the ovens in the bakery industry

    Fuzzy nonlinear dynamic evaporator model in supercritical organic rankine cycle waste heat recovery systems

    Get PDF
    The organic Rankine cycle (ORC)-based waste heat recovery (WHR) system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV) technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications

    Feasibility study of biomass gasification integrated with reheating furnaces in steelmaking process

    Get PDF
    This paper investigates the integration of biosyngas production, reheating furnace and heat recovery steam cycle, in order to use biosyngas directly as fuel in the furnace. A system model was developed to evaluate the feasibility of the proposed system from the perspective of heat and mass balance. To particularly study the impacts of fuel switching on the heating quality of the furnace, a three-dimensional furnace model considering detailed heat transfer processes was embedded into the system through an Aspen PlusTM user defined model. The simulation results show that biosyngas is suitable for direct use as fuel for reheating furnaces. Should CO capture be considered in the proposed system, it has a potential to achieve the capture without external energy input which results in so-called negative emissions of CO

    Optimising renewable energy integration in new housing developments with low carbon technologies

    Get PDF
    Since buildings account for more than one-third of final energy use, it is important to integrate renewable energy sources for new housing developments to reduce demand for grid energy and carbon emissions. This research investigates the potential of solar PV, energy storage, and electric vehicles in new housing developments and their associated grid impacts by taking the UK’s Cambridge, Milton Keynes, Oxford arc as a case study. Using published data on electrical loads for different types of dwellings, energy demands for new housing developments with and without renewable and low carbon technologies are analysed using techno-economic modelling frameworks. Technical analysis includes sizing and optimisation of PV and storage while economic analysis covers cost-benefit analyses, by considering a range of existing and future tariffs and subsidy schemes including Standard, Economy 7 (cheaper electricity for seven hours at night), Feed-in tariff, and the Smart Export Guarantee. Results show that installing PV panels and storage systems not only reduces the dwellings’ grid energy demand by 31% in January but also helps the dwellings to become net exporters of green electricity to the grid in July and hence saves a substantial amount of money by taking advantage of Feed-in and Economy 7 tariffs
    corecore