8 research outputs found

    Invloed van verontreiniging (kust en scheepvaart) op het ecosysteem in kustwater en open zee

    No full text
    An intriguing feature associated with ‘breaks’ in the Indian summer monsoon is the occurrence of intense/flood-producing precipitation confined to central-eastern parts of the Himalayan (CEH) foothills and north-eastern parts of India. Past studies have documented various large-scale circulation aspects associated with monsoon-breaks, however the dynamical mechanisms responsible for anomalous precipitation enhancement over CEH foothills remain unclear. This problem is investigated using diagnostic analyses of observed and reanalysis products and high-resolution model simulations. The present findings show that the anomalous precipitation enhancement over the CEH foothills during monsoon-breaks emerges as a consequence of interactions between southward intruding mid-latitude westerly troughs and the South Asian monsoon circulation in its weak phase. These interactions facilitate intensification of mid-tropospheric cyclonic vorticity and strong ascending motion over the CEH foothills, so as to promote deep convection and concentrated rainfall activity over the region during monsoon-breaks. Mesoscale orographic effects additionally tend to amplify the vertical motions and precipitation over the CEH foothills as evidenced from the high-resolution model simulations. It is further noted from the model simulations that the coupling between precipitation and circulation during monsoon-breaks can produce nearly a threefold increase of total precipitation over the CEH foothills and neighborhood as opposed to active-monsoon conditions

    Meridionally Extending Anomalous Wave Train over Asia During Breaks in the Indian Summer Monsoon

    Get PDF
    Anomalous interactions between the Indian summer monsoon (ISM) circulation and subtropical westerlies are known to trigger breaks in the ISM on subseasonal time-scales, characterised by a pattern of suppressed rainfall over central-north India, and enhanced rainfall over the foothills of the central–eastern Himalayas (CEH). An intriguing feature during ISM breaks is the formation of a mid-tropospheric cyclonic circulation anomaly extending over the subtropical and mid-latitude areas of the Asian continent. This study investigates the mechanism of the aforesaid Asian continental mid-tropospheric cyclonic circulation (ACMCC) anomaly using observations and simplified model experiments. The results of our study indicate that the ACMCC during ISM breaks is part of a larger meridional wave train comprising of alternating anticyclonic and cyclonic anomalies that extend poleward from the monsoon region to the Arctic. A lead–lag analysis of mid-tropospheric circulation anomalies suggests that the meridional wave-train generation is linked to latent heating (LH) anomalies over the CEH foothills, Indo-China, and the Indian landmass during ISM breaks. By conducting sensitivity experiments using a simplified global atmospheric general circulation model forced with satellite-derived three-dimensional LH, it is demonstrated that the combined effects of the enhanced LH over the CEH foothills and Indo-China and decreased LH over the Indian landmass during ISM breaks are pivotal for generating the poleward extending meridional wave train and the ACMCC anomaly. At the same time, the spatial extent of the mid-latitude cyclonic anomaly over Far-East Asia is also influenced by the anomalous LH over central–eastern China. While the present findings provide interesting insights into the role of LH anomalies during ISM breaks on the poleward extending meridional wave train, the ACMCC anomaly is found to have important ramifications on the daily rainfall extremes over the Indo-China region. It is revealed from the present analysis that the frequency of extreme rainfall occurrences over Indo-China shows a twofold increase during ISM break periods as compared to active ISM conditions
    corecore