18,474 research outputs found
Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies
The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail
Customer Concerns about Uncertainty and Willingness to Pay in Leasing Solar Power Systems
Although solar power systems are considered as one of the most promising renewable energy sources, some uncertain factors as well as the high cost could be barriers which create customer resistance. Leasing instead of purchase, as one type of product service system, could be an option to reduce consumer concern on such issues. This study focuses on consumer concerns about uncertainty and willingness to pay for leasing solar power systems. Conjoint analysis method is used to find part worth utilities and estimate gaps of willingness to pay between attribute levels, including various leasing time lengths. The results show the part worth utilities an d relative importance of four major attributes, including leasing time. Among concerns about uncertainties, government subsidy, electricity price, reliability, and rise of new generation solar power systems were found to be significantly related to the additional willingness-to-pay for a shorter leasing time. Cluster analysis is used to identify two groups standing for high and low concerns about uncertainty. People with more concerns tend to pay more for a shorter lease time
Determining Absorption, Emissivity Reduction, and Local Suppression Coefficients inside Sunspots
The power of solar acoustic waves is reduced inside sunspots mainly due to
absorption, emissivity reduction, and local suppression. The coefficients of
these power-reduction mechanisms can be determined by comparing time-distance
cross-covariances obtained from sunspots and from the quiet Sun. By analyzing
47 active regions observed by SOHO/MDI without using signal filters, we have
determined the coefficients of surface absorption, deep absorption, emissivity
reduction, and local suppression. The dissipation in the quiet Sun is derived
as well. All of the cross-covariances are width corrected to offset the effect
of dispersion. We find that absorption is the dominant mechanism of the power
deficit in sunspots for short travel distances, but gradually drops to zero at
travel distances longer than about 6 degrees. The absorption in sunspot
interiors is also significant. The emissivity-reduction coefficient ranges from
about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and
accounts for only about 21.5% of the umbra's and 16.5% of the sunspot's total
power reduction. Local suppression is nearly constant as a function of travel
distance with values of 0.80 and 0.665 for umbrae and whole sunspots
respectively, and is the major cause of the power deficit at large travel
distances.Comment: 14 pages, 21 Figure
Experimental evidence for a two-gap structure of superconducting NbSe_2: a specific heat study in external magnetic fields
To resolve the discrepancies of the superconducting order parameter in
quasi-two-dimensional NbSe_2, comprehensive specific-heat measurements have
been carried out. By analyzing both the zero-field and mixed-state data with
magnetic fields perpendicular to and parallel to the c axis of the crystal and
using the two-gap model, we conclude that (1) more than one energy scale of the
order parameter is required for superconducting NbSe_2 due to the thermodynamic
consistency; (2)delta_L=1.26 meV and delta_S=0.73 meV are obtained; (3)
N_S(0)/N(0)=11%~20%; (4) The observation of the kink in gamma(H) curve suggests
that the two-gap scenario is more favorable than the anisotropic s-wave model
to describe the gap structure of NbSe_2; and (5)delta_S is more isotropic and
has a three-dimensional-like feature and is located either on the Se or the
bonding Nb Fermi sheets.Comment: 16 pages, 4 figure
Size dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charges on spectral diffusion
Making use of droplet epitaxy, we systematically controlled the height of
self-assembled GaAs quantum dots by more than one order of magnitude. The
photoluminescence spectra of single quantum dots revealed the strong dependence
of the spectral linewidth on the dot height. Tall dots with a height of ~30 nm
showed broad spectral peaks with an average width as large as ~5 meV, but
shallow dots with a height of ~2 nm showed resolution-limited spectral lines
(<120 micro eV). The measured height dependence of the linewidths is in good
agreement with Stark coefficients calculated for the experimental shape
variation. We attribute the microscopic source of fluctuating electric fields
to the random motion of surface charges at the vacuum-semiconductor interface.
Our results offer guidelines for creating frequency-locked photon sources,
which will serve as key devices for long-distance quantum key distribution.Comment: 6 pages, 6 figures; updated figs and their description
Spin gap formation in the quantum spin systems TiOX, X=Cl and Br
In the layered quantum spin systems TiOCl and TiOBr the magnetic
susceptibility shows a very weak temperature dependence at high temperatures
and transition-induced phenomena at low temperatures. There is a clear
connection of the observed transition temperatures to the distortion of the
octahedra and the layer separation. Band structure calculations point to a
relation of the local coordinations and the dimensionality of the magnetic
properties. While from magnetic Raman scattering only a small decrease of the
magnetic exchange by -5-10% is derived comparing TiOCl with TiOBr, the
temperature dependence of the magnetic susceptibility favors a much bigger
change.Comment: 5 figures, 15 pages, further information see
http://www.peter-lemmens.d
Unique gap structure and symmetry of the charge density wave in single-layer VSe
Single layers of transition metal dichalcogenides (TMDCs) are excellent
candidates for electronic applications beyond the graphene platform; many of
them exhibit novel properties including charge density waves (CDWs) and
magnetic ordering. CDWs in these single layers are generally a planar
projection of the corresponding bulk CDWs because of the quasi-two-dimensional
nature of TMDCs; a different CDW symmetry is unexpected. We report herein the
successful creation of pristine single-layer VSe, which shows a () CDW in contrast to the (4 4) CDW for the layers in
bulk VSe. Angle-resolved photoemission spectroscopy (ARPES) from the single
layer shows a sizable () CDW gap of 100 meV at the
zone boundary, a 220 K CDW transition temperature twice the bulk value, and no
ferromagnetic exchange splitting as predicted by theory. This robust CDW with
an exotic broken symmetry as the ground state is explained via a
first-principles analysis. The results illustrate a unique CDW phenomenon in
the two-dimensional limit
- …