10 research outputs found

    Novel soft bending actuator based power augmentation hand exoskeleton controlled by human intention

    Get PDF
    This article presents the development of a soft material power augmentation wearable robot using novel bending soft artificial muscles. This soft exoskeleton was developed as a human hand power augmentation system for healthy or partially hand disabled individuals. The proposed prototype serves healthy manual workers by decreasing the muscular effort needed for grasping objects. Furthermore, it is a power augmentation wearable robot for partially hand disabled or post-stroke patients, supporting and augmenting the fingers’ grasping force with minimum muscular effort in most everyday activities. This wearable robot can fit any adult hand size without the need for any mechanical system changes or calibration. Novel bending soft actuators are developed to actuate this power augmentation device. The performance of these actuators has been experimentally assessed. A geometrical kinematic analysis and mathematical output force model have been developed for the novel actuators. The performance of this mathematical model has been proven experimentally with promising results. The control system of this exoskeleton is created by hybridization between cascaded position and force closed loop intelligent controllers. The cascaded position controller is designed for the bending actuators to follow the fingers in their bending movements. The force controller is developed to control the grasping force augmentation. The operation of the control system with the exoskeleton has been experimentally validated. EMG signals were monitored during the experiments to determine that the proposed exoskeleton system decreased the muscular efforts of the wearer

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Knee Fix or Replace Trial (KFORT): A randomized controlled feasibility study

    No full text
    AIMS: The aim of this study was to assess the feasibility of conducting a full-scale, appropriately powered, randomized controlled trial (RCT) comparing internal fracture fixation and distal femoral replacement (DFR) for distal femoral fractures in older patients. PATIENTS AND METHODS: Seven centres recruited patients into the study. Patients were eligible if they were greater than 65 years of age with a distal femoral fracture, and if the surgeon felt that they were suitable for either form of treatment. Outcome measures included the patients' willingness to participate, clinicians' willingness to recruit, rates of loss to follow-up, the ability to capture data, estimates of standard deviation to inform the sample size calculation, and the main determinants of cost. The primary clinical outcome measure was the EuroQol five-dimensional index (EQ-5D) at six months following injury. RESULTS: Of 36 patients who met the inclusion criteria, five declined to participate and eight were not recruited, leaving 23 patients to be randomized. One patient withdrew before surgery. Of the remaining patients, five (23%) withdrew during the follow-up period and six (26%) died. A 100% response rate was achieved for the EQ-5D at each follow-up point, excluding one missing datapoint at baseline. In the DFR group, the mean cost of the implant outweighed the mean cost of many other items, including theatre time, length of stay, and readmissions. For a powered RCT, a total sample size of 1400 would be required with 234 centres recruiting over three years. At six months, the EQ-5D utility index was lower in the DFR group. CONCLUSION: This study found that running a full-scale trial in this country would not be feasible. However, it may be feasible to undertake an international multicentre trial, and our findings provide some guidance about the power of such a study, the numbers required, and some challenges that should be anticipated and addressed. Cite this article: Bone Joint J 2019;101-B:1408-1415

    Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo

    No full text
    Activating mutations in the neuroblastoma rat sarcoma viral oncogene homolog (NRAS) gene are common genetic events in malignant melanoma being found in 15–25% of cases. NRAS is thought to activate both mitogen activated protein kinase (MAPK) and PI3K signaling in melanoma cells. We studied the influence of different components on the MAP/extracellular signal-regulated (ERK) kinase (MEK) and PI3K/mammalian target of rapamycin (mTOR)-signaling cascade in NRAS mutant melanoma cells. In general, these cells were more sensitive to MEK inhibition compared with inhibition in the PI3K/mTOR cascade. Combined targeting of MEK and PI3K was superior to MEK and mTOR(1,2) inhibition in all NRAS mutant melanoma cell lines tested, suggesting that PI3K signaling is more important for cell survival in NRAS mutant melanoma when MEK is inhibited. However, targeting of PI3K/mTOR(1,2) in combination with MEK inhibitors is necessary to effectively abolish growth of NRAS mutant melanoma cells in vitro and regress xenografted NRAS mutant melanoma. Furthermore, we showed that MEK and PI3K/mTOR(1,2) inhibition is synergistic. Expression analysis confirms that combined MEK and PI3K/mTOR(1,2) inhibition predominantly influences genes in the rat sarcoma (RAS) pathway and growth factor receptor pathways, which signal through MEK/ERK and PI3K/mTOR, respectively. Our results suggest that combined targeting of the MEK/ERK and PI3K/mTOR pathways has antitumor activity and might serve as a therapeutic option in the treatment of NRAS mutant melanoma, for which there are currently no effective therapies

    Biotechnological application of microalgae for integrated palm oil mill effluent (POME) remediation: a review

    No full text
    corecore