790 research outputs found

    From Teachers’ Views to Explore the Implementation of Energy Education in Taiwan’s Elementary Schools

    Get PDF
    This study intended to explore the implementation of promoting “energy education” in Taiwan’s elementary schools. The research adopted a questionnaire (Likert five-point scale) from teachers’ view in three dimensions to construct examination. The 45 participants come from 10 different primary schools distributed across Taiwan, which participate in energy education program in the second period (2015-2017). The data was analyzed by ANOVA, mean and standard deviations of the viewpoints of the participants in the energy education learning achievement of the primary schools. The first findings in this research is, the program of energy education was most effective in “energy attitude” (M=4.282, SD=0.814), followed by “energy awareness” (M=4.049, SD=0.720) and “energy behavior” (M=3.983, SD=0.875). It shows that students have positive energy attitude, but they were relatively weak at energy saving behavior. Secondly, there is statistically significant difference in overall students learning performance with urban areas are higher than rural areas. Finally, it is suggested that in addition to strengthen energy attitudes and energy awareness, we should encourage students to take action in save energy in their daily life. Furthermore, we should invest more resources to rural areas to balance the students’ performances between urban and rural areas

    Improper Ferroelectric Polarisation in a Perovskite driven by Inter-site Charge Transfer and Ordering

    Get PDF
    It is of great interest to design and make materials in which ferroelectric polarisation is coupled to other order parameters such as lattice, magnetic and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realised. Here we report detailed crystallographic studies of a novel perovskite HgA^{\textbf{A}}Mn3A’^{\textbf{A'}}_{3}Mn4B^{\textbf{B}}_{4}O12_{12} that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A' and B-sites, which are themselves driven by a highly unusual MnA^{A'}-MnB^B inter-site charge transfer. The inherent coupling of polar, charge, orbital and hence magnetic degrees of freedom, make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.Comment: 9 pages, 7 figure

    Distributed Training Large-Scale Deep Architectures

    Full text link
    Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training

    Relationship between maximal incremental and high-intensity interval exercise performance in elite athletes

    Get PDF
    This descriptive study aimed to explore the physiological factors that determine tolerance to exertion during high-intensity interval effort. Forty-seven young women (15–28 years old) were enrolled: 23 athletes from Taiwan national or national reserve teams and 24 moderately active females. Each participant underwent a maximal incremental INC (modified Bruce protocol) cardiopulmonary exercise test on the first day and high-intensity interval testing (HIIT) on the second day, both performed on a treadmill. The HIIT protocol involved alternation between 1-min effort at 120% of the maximal speed, at the same slope reached at the end of the INC, and 1-min rest until volitional exhaustion. Gas exchange, heart rate (HR), and muscle oxygenation at the right vastus lateralis, measured by near-infrared spectroscopy, were continuously recorded. The number of repetitions completed (Rlim) by each participant was considered the HIIT tolerance index. The results showed a large difference in the Rlim (range, 2.6–12.0 repetitions) among the participants. Stepwise linear regression revealed that the variance in the Rlim within the cohort was related to the recovery rates of oxygen consumption (), HR at the second minute after INC, and muscle tissue saturation index at exhaustion (R = 0.644). In addition, age was linearly correlated with Rlim (adjusted R = −0.518, p \u3c 0.0001). In conclusion, the recovery rates for and HR after the incremental test, and muscle saturation index at exhaustion, were the major physiological factors related to HIIT performance. These findings provide insights into the role of the recovery phase after maximal INC exercise testing. Future research investigating a combination of INC and HIIT testing to determine training-induced performance improvement is warranted

    The Clinical COPD Questionnaire Correlated with BODE Index-A Cross-Sectional Study

    Get PDF
    The Global initiative for Chronic Obstructive Lung Disease (GOLD) staging has widely used in the stratification of the severity of COPD, while BODE (body mass index, airflow obstruction, dyspnea, and exercise capacity) index was proven superior to FEV1 in predicting mortality, exacerbation and disease severity in patients with COPD. Clinical COPD Questionnaire (CCQ), a questionnaire with ten items categorized into three domains (symptoms, functional state and mental state) was developed to measure health status of COPD patients. However, little is known about the relationship between CCQ score and BODE index. We performed a prospective study with the inclusion of 89 patients who were clinically stable after a 6-week-therapy for COPD symptoms comparing their health status assessed by CCQ, BODE index and GOLD staging. We found that the total CCQ score was correlated with BODE score (P < 0.001) and GOLD staging (P < 0.001); of three CCQ domains, the functional status correlated the most with BODE index (rS = 0.670) and GOLD staging (rS = 0.531), followed by symptoms (rS = 0.482; rS = 0.346, respectively), and mental status (rS = 0.340; rS = 0.236, respectively). Our data suggest that CCQ is a reliable and convenient alternative tool to evaluate the severity of COPD

    Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction

    Get PDF
    Background/PurposeMesh-augmented vaginal surgery for treatment of pelvic organ prolapse (POP) does not meet patients' needs. This study aims to test the hypothesis that fascia tissue engineering using adipose-derived stem cells (ADSCs) might be a potential therapeutic strategy for reconstructing the pelvic floor.MethodsHuman ADSCs were isolated, differentiated, and characterized in vitro. Both ADSCs and fibroblastic-differentiated ADSCs were used to fabricate tissue-engineered fascia equivalents, which were then transplanted under the back skin of experimental nude mice.ResultsADSCs prepared in our laboratory were characterized as a group of mesenchymal stem cells. In vitro fibroblastic differentiation of ADSCs showed significantly increased gene expression of cellular collagen type I and elastin (p < 0.05) concomitantly with morphological changes. By contrast, ADSCs cultured in control medium did not demonstrate these changes. Both of the engrafted fascia equivalents could be traced up to 12 weeks after transplantation in the subsequent animal study. Furthermore, the histological outcomes differed with a thin (111.0 ± 19.8 μm) lamellar connective tissue or a thick (414.3 ± 114.9 μm) adhesive fibrous tissue formation between the transplantation of ADSCs and fibroblastic-differentiated ADSCs, respectively. Nonetheless, the implantation of a scaffold without cell seeding (the control group) resulted in a thin (102.0 ± 17.1 μm) fibrotic band and tissue contracture.ConclusionOur results suggest the ADSC-seeded implant is better than the implant alone in enhancing tissue regeneration after transplantation. ADSCs with or without fibroblastic differentiation might have a potential but different role in fascia tissue engineering to repair POP in the future

    Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d

    Get PDF
    Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (∼60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (∼50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (∼80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower T(m) values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA

    Genetic analysis of fish iridoviruses isolated in Taiwan during 2001–2009

    Get PDF
    To investigate the genetic relationships between field strains of iridoviruses gathered from various fish species in Taiwan, viruses that were collected from 2001 to 2009 were analyzed. Open reading frames encoding the viral major capsid protein (MCP) and adenosine triphosphatase (ATPase) were sequenced for phylogenetic analysis. Our results indicated that iridoviruses from Taiwan aquaculture fishes could be classified into two groups: prior to 2005, the viruses were closely related to members of the genus Ranavirus; and after 2005, they were similar to members of the genus Megalocytivirus. Based on the analysis of MCP amino acid sequences, virus isolates were divided into 4 major genotypes that were related to ISKNV, RSIV, FLIV, and GIV, respectively. Pairwise comparisons of MCP genes showed that the ranavirus was an epidemic pathogen for economically important species in the major production regions and cultured marine fish, while the megalocytivirus isolates were sensitive to host range. In addition, the distribution of synonymous and non-synonymous changes in the MCP gene revealed that the iridoviruses were evolving slowly, and most of the variations were synonymous mutations. The Ka/Ks values were lower than one, and hence, the viruses were under negative selection
    corecore