640 research outputs found

    HIV Infection and the Risk of World Health Organization-Defined Sudden Cardiac Death

    Get PDF
    Background People living with HIV have higher sudden cardiac death (SCD) rates compared with the general population. Whether HIV infection is an independent SCD risk factor is unclear. Methods and Results This study evaluated participants from the Veterans Aging Cohort Study, an observational, longitudinal cohort of veterans with and without HIV infection matched 1:2 on age, sex, race/ethnicity, and clinical site. Baseline for this study was a participant\u27s first clinical visit on or after April 1, 2003. Participants were followed through December 31, 2014. Using Cox proportional hazards regression, we assessed whether HIV infection, CD4 cell counts, and/or HIV viral load were associated with World Health Organization (WHO)–defined SCD risk. Among 144 336 participants (30% people living with HIV), the mean (SD) baseline age was 50.0 years (10.6 years), 97% were men, and 47% were of Black race. During follow‐up (median, 9.0 years), 3035 SCDs occurred. HIV infection was associated with increased SCD risk (hazard ratio [HR], 1.14; 95% CI, 1.04–1.25), adjusting for possible confounders. In analyses with time‐varying CD4 and HIV viral load, people living with HIV with CD4 counts \u3c 200 cells/mm3 (HR, 1.57; 95% CI, 1.28–1.92) or viral load \u3e 500 copies/mL (HR, 1.70; 95% CI, 1.46–1.98) had increased SCD risk versus veterans without HIV. In contrast, people living with HIV who had CD4 cell counts \u3e 500 cells/mm3 (HR, 1.03; 95% CI, 0.90–1.18) or HIV viral load \u3c 500 copies/mL (HR, 0.97; 95% CI, 0.87–1.09) were not at increased SCD risk. Conclusions HIV infection is associated with increased risk of WHO‐defined SCD among those with elevated HIV viral load or low CD4 cell counts

    Radiative and Semileptonic B Decays Involving Higher K-Resonances in the Final States

    Full text link
    We study the radiative and semileptonic B decays involving a spin-JJ resonant KJ(∗)K_J^{(*)} with parity (−1)J(-1)^J for KJ∗K_J^* and (−1)J+1(-1)^{J+1} for KJK_J in the final state. Using the large energy effective theory (LEET) techniques, we formulate B→KJ(∗)B \to K_J^{(*)} transition form factors in the large recoil region in terms of two independent LEET functions ζ⊄KJ(∗)\zeta_\perp^{K_J^{(*)}} and ζ∄KJ(∗)\zeta_\parallel^{K_J^{(*)}}, the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, ζ⊄,∄KJ(∗)\zeta_{\perp,\parallel}^{K_J^{(*)}} exhibit a dipole dependence in q2q^2. We predict the decay rates for B→KJ(∗)ÎłB \to K_J^{(*)} \gamma, B→KJ(∗)ℓ+ℓ−B \to K_J^{(*)} \ell^+ \ell^- and B→KJ(∗)ΜΜˉB \to K_J^{(*)}\nu \bar{\nu}. The branching fractions for these decays with higher KK-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of ζ⊄,∄KJ(∗)\zeta^{K_J^{(*)}}_{\perp,\parallel}. Furthermore, if the spin of KJ(∗)K_J^{(*)} becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch-Gordan coefficients defined by the polarization tensors of the KJ(∗)K_J^{(*)}. We also calculate the forward backward asymmetry of the B→KJ(∗)ℓ+ℓ−B \to K_J^{(*)} \ell^+ \ell^- decay, for which the zero is highly insensitive to the KK-resonances in the LEET parametrization.Comment: 27 pages, 4 figures, 7 tables;contents and figures corrected, title and references revise

    Long-Range Transport of Asian Dust and Air Pollutants to Taiwan

    Full text link
    Dust storms and long-range transport of pollutants are major environ-mental concerns of Taiwan during the winter monsoon season when north-easterly winds prevail following passages of cold fronts. To quantify the impact on air quality, we develop an objective method to classify and study the long-range transport processes by examining the frontal passages in two representative years. We have found that there is about one frontal passage per week in winter and spring, consistent with the climatological average. The long-range transport events are classified into three types ac-cording to their degrees of impact on levels of dusts and air pollutants in Taiwan, namely dust storms (DS), long-range transport with pollutants (FP), and long-range transport of background air masses (BG). DS cases occurred 4.7 % of the time over 14 months and had a large average PM10 concentra-tion of 127.6 ”g m 3 − at Wan-Li station. FP cases occurred 1.9 % of the time and the mean concentration of PM10 during the FP periods was about 85 ”g m 3 −. BG cases happened 18.6 % of the time and the mean concentra-tion of PM10 was 32.8 ”g m 3−. Dust storms and air pollutants tend to be transported in different air parcels as evidenced by a lack of correlation between dust aerosols and air pollutants. The frequency of local pollution (LP) cases was 71.7 % in winter and spring. The average PM10 concentra-tion of LP cases at the Wan-Li station was 47.4 ”g m 3 −. However, about one to two-thirds of the PM10 during LP cases can be attributed to the long

    Observational constraints on the physical nature of submillimetre source multiplicity : chance projections are common

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Interferometric observations have demonstrated that a significant fraction of single-dish submillimetre (submm) sources are blends of multiple submm galaxies (SMGs), but the nature of this multiplicity, i.e. whether the galaxies are physically associated or chance projections, has not been determined.We performed spectroscopy of 11 SMGs in six multicomponent submm sources, obtaining spectroscopic redshifts for nine of them. For an additional two component SMGs, we detected continuum emission but no obvious features.We supplement our observed sources with four single-dish submm sources from the literature. This sample allows us to statistically constrain the physical nature of single-dish submm source multiplicity for the first time. In three (3/7, or 43 -33 +39 per cent at 95 per cent confidence) of the single-dish sources for which the nature of the blending is unambiguous, the components for which spectroscopic redshifts are available are physically associated, whereas 4/7 (57 -39 +33 per cent) have at least one unassociated component. When components whose spectra exhibit continuum but no features and for which the photometric redshift is significantly different from the spectroscopic redshift of the other component are also considered, 6/9 (67 -37 +26 per cent) of the single-dish sources are comprised of at least one unassociated component SMG. The nature of the multiplicity of one single-dish source is ambiguous. We conclude that physically associated systems and chance projections both contribute to the multicomponent single-dish submm source population. This result contradicts the conventional wisdom that bright submm sources are solely a result of merger-induced starbursts, as blending of unassociated galaxies is also important.Peer reviewe

    Effects of transport on a biomass burning plume from Indochina during EMeRGe-Asia identified by WRF-Chem

    Get PDF
    The Indochina biomass burning (BB) season in springtime has a substantial environmental impact on the surrounding areas in Asia. In this study, we evaluated the environmental impact of a major long-range BB transport event on 19 March 2018 (a flight of the High Altitude and Long Range Research Aircraft (HALO; https://www.halo-spp.de, last access: 14 February 2023) research aircraft, flight F0319) preceded by a minor event on 17 March 2018 (flight F0317). Aircraft data obtained during the campaign in Asia of the Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales (EMeRGe) were available between 12 March and 7 April 2018. In F0319, results of 1 min mean carbon monoxide (CO), ozone (O3_3), acetone (ACE), acetonitrile (ACN), organic aerosol (OA), and black carbon aerosol (BC) concentrations were up to 312.0, 79.0, 3.0, and 0.6 ppb and 6.4 and 2.5 ”g m−3^{−3}, respectively, during the flight, which passed through the BB plume transport layer (BPTL) between the elevation of 2000–4000 m over the East China Sea (ECS). During F0319, the CO, O3_3, ACE, ACN, OA, and BC maximum of the 1 min average concentrations were higher in the BPTL by 109.0, 8.0, 1.0, and 0.3 ppb and 3.0 and 1.3 ”g m−3^{−3} compared to flight F0317, respectively. Sulfate aerosol, rather than OA, showed the highest concentration at low altitudes (<1000 m) in both flights F0317 and F0319 resulting from the continental outflow in the ECS. The transport of BB aerosols from Indochina and its impacts on the downstream area were evaluated using a Weather Research Forecasting with Chemistry (WRF-Chem) model. The modeling results tended to overestimate the concentration of the species, with examples being CO (64 ppb), OA (0.3 ”g m−3^{−3}), BC (0.2 ”g m−3^{−3}), and O3_3 (12.5 ppb) in the BPTL. Over the ECS, the simulated BB contribution demonstrated an increasing trend from the lowest values on 17 March 2018 to the highest values on 18 and 19 March 2018 for CO, fine particulate matter (PM2.5_{2.5}), OA, BC, hydroxyl radicals (OH), nitrogen oxides (NOx_x), total reactive nitrogen (NOy_y), and O3_3; by contrast, the variation of J(O1^1D) decreased as the BB plume\u27s contribution increased over the ECS. In the lower boundary layer (<1000 m), the BB plume\u27s contribution to most species in the remote downstream areas was <20 %. However, at the BPTL, the contribution of the long-range transported BB plume was as high as 30 %–80 % for most of the species (NOy_y, NOx_x, PM2.5_{2.5}, BC, OH, O3_3, and CO) over southern China (SC), Taiwan, and the ECS. BB aerosols were identified as a potential source of cloud condensation nuclei, and the simulation results indicated that the transported BB plume had an effect on cloud water formation over SC and the ECS on 19 March 2018. The combination of BB aerosol enhancement with cloud water resulted in a reduction of incoming shortwave radiation at the surface in SC and the ECS by 5 %–7 % and 2 %–4 %, respectively, which potentially has significant regional climate implications

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→ΌΜΌ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Moment-Based Evidence for Simple Rational-Valued Hilbert-Schmidt Generic 2 x 2 Separability Probabilities

    Full text link
    Employing Hilbert-Schmidt measure, we explicitly compute and analyze a number of determinantal product (bivariate) moments |rho|^k |rho^{PT}|^n, k,n=0,1,2,3,..., PT denoting partial transpose, for both generic (9-dimensional) two-rebit (alpha = 1/2) and generic (15-dimensional) two-qubit (alpha=1) density matrices rho. The results are, then, incorporated by Dunkl into a general formula (Appendix D6), parameterized by k, n and alpha, with the case alpha=2, presumptively corresponding to generic (27-dimensional) quaternionic systems. Holding the Dyson-index-like parameter alpha fixed, the induced univariate moments (|rho| |rho^{PT}|)^n and |rho^{PT}|^n are inputted into a Legendre-polynomial-based (least-squares) probability-distribution reconstruction algorithm of Provost (Mathematica J., 9, 727 (2005)), yielding alpha-specific separability probability estimates. Since, as the number of inputted moments grows, estimates based on |rho| |rho^{PT}| strongly decrease, while ones employing |rho^{PT}| strongly increase (and converge faster), the gaps between upper and lower estimates diminish, yielding sharper and sharper bounds. Remarkably, for alpha = 2, with the use of 2,325 moments, a separability-probability lower-bound 0.999999987 as large as 26/323 = 0.0804954 is found. For alpha=1, based on 2,415 moments, a lower bound results that is 0.999997066 times as large as 8/33 = 0.242424, a (simpler still) fractional value that had previously been conjectured (J. Phys. A, 40, 14279 (2007)). Furthermore, for alpha = 1/2, employing 3,310 moments, the lower bound is 0.999955 times as large as 29/64 = 0.453125, a rational value previously considered (J. Phys. A, 43, 195302 (2010)).Comment: 47 pages, 12 figures; slightly expanded and modified for journal publication; this paper incorporates and greatly extends arXiv:1104.021
    • 

    corecore