7 research outputs found

    A single MYB transcription factor with multiple functions during flower development.

    Get PDF
    Members of the R2R3-MYB transcription factor subgroup 19 (SG19) have been extensively studied in multiple plant species using different silenced or mutated lines. Some studies have proposed a function in flower opening, others in floral organ development/maturation, or specialized metabolism production. While SG19 members are clearly key players during flower development and maturation, the resulting picture is complex, confusing our understanding in how SG19 genes function. To clarify the function of the SG19 transcription factors, we used a single system, Petunia axillaris, and targeted its two SG19 members (EOB1 and EOB2) by CRISPR-Cas9. Although EOB1 and EOB2 are highly similar, they display radically different mutant phenotypes. EOB1 has a specific role in scent emission while EOB2 has pleiotropic functions during flower development. The eob2 knockout mutants reveal that EOB2 is a repressor of flower bud senescence by inhibiting ethylene production. Moreover, partial loss-of-function mutants (transcriptional activation domain missing) show that EOB2 is also involved in both petal and pistil maturation through regulation of primary and secondary metabolism. Here, we provide new insights into the genetic regulation of flower maturation and senescence. It also emphasizes the function of EOB2 in the adaptation of plants to specific guilds of pollinators

    Bases moléculaires du développement de la fleur chez Petunia x hybrida

    No full text
    While the master regulators of floral organ identity have been identified in multiple plantspecies, it remains poorly understood how the downstream transcriptional programs finally lead to the development of the different floral organs, and how evolutionary variations in these programs have yielded the astonishing floral architectural diversity existing in nature. The main objective of my PhD work was to start to address these fundamental questions by analysing floral development in Petunia x hybrida, chosen as model for its elaborate petal architecture combined with the availability of a powerful genetics toolkit. My research started with the identification of the petal transcriptome composition acting downstream of the homeotic genefunctions (Chapter 1). To achieve this, we used an RNAseq strategy on young flowers from a unique collection of floral homeotic mutants, complemented with wild-type samples. We finallyobtained a list of more than 400 potentially interesting genes involved in petal development. Toprovide a detailed analysis for Petunia petal development we used a reverse genetics approachand selected 95 genes expressed during petal development for functional analysis by transposonmutagenesis. I also introduced the CRISPR-Cas9 technology in the team (Chapter 3), targeting3 petal candidate genes for which no transposon insertions in their coding sequence were found. Unfortunately, we did not manage to find eye-catching defects in petal development linked tothe selected mutations. However, in the population generated for the petal reverse genetics screen we encountered a small family in which a mutation segregated causing a novel floral developmental defect strongly affecting petal and stamen development. We confirmed that this mutation was unrelated to the petal candidate gene initially targeted, and by a forward genetic approach we demonstrated that it was instead caused by a different transposon insertion in anR2R3-MYB transcription factor (Chapter 2). With the CRISPR-Cas9 technology I also targetedsome interesting genes involved in flower development like the C-class gene PMADS3. Iobtained KO mutants, and this result was part of a paper (Morel et al., 2018) and allowed a detailed description of the C-class genes function in petunia (Chapter 3). In the last part, we investigated how tube and limb development of Petunia petals depend on the cell-layer specificaction of a MADS-box transcription factor. This allowed to define the contribution of the differentcell-layers in petal development (Chapter 4). Put together, my PhD work should provide a better understanding of floral organ development and architectural diversity.Il a dĂ©jĂ  Ă©tĂ© montrĂ© chez plusieurs espĂšces que quelques gĂšnes architectes (les gĂšnes A, B et C) Ă©taient responsables de l’identitĂ© des organes floraux : sĂ©pales, pĂ©tales, Ă©tamines et pistils. Cependant, les rĂ©seaux de gĂšnes rĂ©gulĂ©s en aval permettant le dĂ©veloppement des organes floraux, et pouvant expliquer une partie de la diversitĂ© des plantes Ă  fleurs demeurent peu connus. L’objectif de mon projet de thĂšse vise Ă  Ă©tudier le dĂ©veloppement de la fleur de façon plus dĂ©taillĂ©e avec comme modĂšle d’étude les fleurs de Petunia x hybrida. Mes travaux de thĂšse se sont organisĂ©s autour de plusieurs axes de recherche, en commençant par l’obtention du transcriptome spĂ©cifique aux pĂ©tales chez le PĂ©tunia. La stratĂ©gie imaginĂ©e a Ă©tĂ© de rĂ©aliser un RNA-Seq sur de jeunes fleurs sauvages et sur une collection unique de mutants homĂ©otiques. Les donnĂ©es obtenues nous ont permis d’identifier une liste de 452 gĂšnes prĂ©sentant un profil d’expression pĂ©tale spĂ©cifique. Afin d’identifier l’implication de ces gĂšnes dans le dĂ©veloppement des pĂ©tales, un crible de gĂ©nĂ©tique inverse a Ă©tĂ© rĂ©alisĂ© sur 98 gĂšnes de la liste (95 mutants gĂ©nĂ©rĂ©s avec le systĂšme transposon et 3gĂšnes avec le systĂšme CRISPR-Cas9). De façon Ă©tonnante, aucun phĂ©notype pĂ©tale n’a pu ĂȘtre associĂ© Ă  la mutation des gĂšnes candidats. Cependant dans la population gĂ©nĂ©rĂ©e pour le crible pĂ©tale, nous avons pu observer une population de plantes sĂ©grĂ©geant pour un phĂ©notype avec des dĂ©fauts dans le dĂ©veloppement floral. Nous avons confirmĂ© que ce phĂ©notype n’était pas associĂ© Ă  un des gĂšnes candidats initialement ciblĂ© et par une mĂ©thode de gĂ©nĂ©tique directe, nous avons identifiĂ© que ce phĂ©notype Ă©tait causĂ© par une insertion de transposon dans un facteur de transcription R2R3-MYB. Dans un autre chapitre, j’ai ciblĂ© plusieurs gĂšnes avec de potentiels rĂŽles dans le dĂ©veloppement de la fleur avec la technique CRISPR-Cas9. Les mutations obtenues dans le gĂšne classe-C PMADS3 ont contribuĂ© Ă  une publication (Morel et al., 2018) ainsi qu’à la description de façon plus approfondie des fonctions des gĂšnes de la classe-C chez le PĂ©tunia. Dans la derniĂšre partie, nous avons montrĂ© que selon la couche cellulaire oĂč le gĂšne DEF (responsable de l’identitĂ© des pĂ©tales) est exprimĂ©, le pĂ©tale ne prĂ©sente pas un phĂ©notype sauvage. La croissance et la forme des pĂ©tales (tube versus limbe) nĂ©cessitent l’intervention et la coordination de plusieurs couches cellulaires (L1, L2 et L3)

    Bases moléculaires du développement de la fleur chez Petunia x hybrida

    No full text
    Il a dĂ©jĂ  Ă©tĂ© montrĂ© chez plusieurs espĂšces que quelques gĂšnes architectes (les gĂšnes A, B et C) Ă©taient responsables de l’identitĂ© des organes floraux : sĂ©pales, pĂ©tales, Ă©tamines et pistils. Cependant, les rĂ©seaux de gĂšnes rĂ©gulĂ©s en aval permettant le dĂ©veloppement des organes floraux, et pouvant expliquer une partie de la diversitĂ© des plantes Ă  fleurs demeurent peu connus. L’objectif de mon projet de thĂšse vise Ă  Ă©tudier le dĂ©veloppement de la fleur de façon plus dĂ©taillĂ©e avec comme modĂšle d’étude les fleurs de Petunia x hybrida. Mes travaux de thĂšse se sont organisĂ©s autour de plusieurs axes de recherche, en commençant par l’obtention du transcriptome spĂ©cifique aux pĂ©tales chez le PĂ©tunia. La stratĂ©gie imaginĂ©e a Ă©tĂ© de rĂ©aliser un RNA-Seq sur de jeunes fleurs sauvages et sur une collection unique de mutants homĂ©otiques. Les donnĂ©es obtenues nous ont permis d’identifier une liste de 452 gĂšnes prĂ©sentant un profil d’expression pĂ©tale spĂ©cifique. Afin d’identifier l’implication de ces gĂšnes dans le dĂ©veloppement des pĂ©tales, un crible de gĂ©nĂ©tique inverse a Ă©tĂ© rĂ©alisĂ© sur 98 gĂšnes de la liste (95 mutants gĂ©nĂ©rĂ©s avec le systĂšme transposon et 3gĂšnes avec le systĂšme CRISPR-Cas9). De façon Ă©tonnante, aucun phĂ©notype pĂ©tale n’a pu ĂȘtre associĂ© Ă  la mutation des gĂšnes candidats. Cependant dans la population gĂ©nĂ©rĂ©e pour le crible pĂ©tale, nous avons pu observer une population de plantes sĂ©grĂ©geant pour un phĂ©notype avec des dĂ©fauts dans le dĂ©veloppement floral. Nous avons confirmĂ© que ce phĂ©notype n’était pas associĂ© Ă  un des gĂšnes candidats initialement ciblĂ© et par une mĂ©thode de gĂ©nĂ©tique directe, nous avons identifiĂ© que ce phĂ©notype Ă©tait causĂ© par une insertion de transposon dans un facteur de transcription R2R3-MYB. Dans un autre chapitre, j’ai ciblĂ© plusieurs gĂšnes avec de potentiels rĂŽles dans le dĂ©veloppement de la fleur avec la technique CRISPR-Cas9. Les mutations obtenues dans le gĂšne classe-C PMADS3 ont contribuĂ© Ă  une publication (Morel et al., 2018) ainsi qu’à la description de façon plus approfondie des fonctions des gĂšnes de la classe-C chez le PĂ©tunia. Dans la derniĂšre partie, nous avons montrĂ© que selon la couche cellulaire oĂč le gĂšne DEF (responsable de l’identitĂ© des pĂ©tales) est exprimĂ©, le pĂ©tale ne prĂ©sente pas un phĂ©notype sauvage. La croissance et la forme des pĂ©tales (tube versus limbe) nĂ©cessitent l’intervention et la coordination de plusieurs couches cellulaires (L1, L2 et L3).While the master regulators of floral organ identity have been identified in multiple plantspecies, it remains poorly understood how the downstream transcriptional programs finally lead to the development of the different floral organs, and how evolutionary variations in these programs have yielded the astonishing floral architectural diversity existing in nature. The main objective of my PhD work was to start to address these fundamental questions by analysing floral development in Petunia x hybrida, chosen as model for its elaborate petal architecture combined with the availability of a powerful genetics toolkit. My research started with the identification of the petal transcriptome composition acting downstream of the homeotic genefunctions (Chapter 1). To achieve this, we used an RNAseq strategy on young flowers from a unique collection of floral homeotic mutants, complemented with wild-type samples. We finallyobtained a list of more than 400 potentially interesting genes involved in petal development. Toprovide a detailed analysis for Petunia petal development we used a reverse genetics approachand selected 95 genes expressed during petal development for functional analysis by transposonmutagenesis. I also introduced the CRISPR-Cas9 technology in the team (Chapter 3), targeting3 petal candidate genes for which no transposon insertions in their coding sequence were found. Unfortunately, we did not manage to find eye-catching defects in petal development linked tothe selected mutations. However, in the population generated for the petal reverse genetics screen we encountered a small family in which a mutation segregated causing a novel floral developmental defect strongly affecting petal and stamen development. We confirmed that this mutation was unrelated to the petal candidate gene initially targeted, and by a forward genetic approach we demonstrated that it was instead caused by a different transposon insertion in anR2R3-MYB transcription factor (Chapter 2). With the CRISPR-Cas9 technology I also targetedsome interesting genes involved in flower development like the C-class gene PMADS3. Iobtained KO mutants, and this result was part of a paper (Morel et al., 2018) and allowed a detailed description of the C-class genes function in petunia (Chapter 3). In the last part, we investigated how tube and limb development of Petunia petals depend on the cell-layer specificaction of a MADS-box transcription factor. This allowed to define the contribution of the differentcell-layers in petal development (Chapter 4). Put together, my PhD work should provide a better understanding of floral organ development and architectural diversity

    Bases moléculaires du développement de la fleur chez Petunia x hybrida

    No full text
    While the master regulators of floral organ identity have been identified in multiple plantspecies, it remains poorly understood how the downstream transcriptional programs finally lead to the development of the different floral organs, and how evolutionary variations in these programs have yielded the astonishing floral architectural diversity existing in nature. The main objective of my PhD work was to start to address these fundamental questions by analysing floral development in Petunia x hybrida, chosen as model for its elaborate petal architecture combined with the availability of a powerful genetics toolkit. My research started with the identification of the petal transcriptome composition acting downstream of the homeotic genefunctions (Chapter 1). To achieve this, we used an RNAseq strategy on young flowers from a unique collection of floral homeotic mutants, complemented with wild-type samples. We finallyobtained a list of more than 400 potentially interesting genes involved in petal development. Toprovide a detailed analysis for Petunia petal development we used a reverse genetics approachand selected 95 genes expressed during petal development for functional analysis by transposonmutagenesis. I also introduced the CRISPR-Cas9 technology in the team (Chapter 3), targeting3 petal candidate genes for which no transposon insertions in their coding sequence were found. Unfortunately, we did not manage to find eye-catching defects in petal development linked tothe selected mutations. However, in the population generated for the petal reverse genetics screen we encountered a small family in which a mutation segregated causing a novel floral developmental defect strongly affecting petal and stamen development. We confirmed that this mutation was unrelated to the petal candidate gene initially targeted, and by a forward genetic approach we demonstrated that it was instead caused by a different transposon insertion in anR2R3-MYB transcription factor (Chapter 2). With the CRISPR-Cas9 technology I also targetedsome interesting genes involved in flower development like the C-class gene PMADS3. Iobtained KO mutants, and this result was part of a paper (Morel et al., 2018) and allowed a detailed description of the C-class genes function in petunia (Chapter 3). In the last part, we investigated how tube and limb development of Petunia petals depend on the cell-layer specificaction of a MADS-box transcription factor. This allowed to define the contribution of the differentcell-layers in petal development (Chapter 4). Put together, my PhD work should provide a better understanding of floral organ development and architectural diversity.Il a dĂ©jĂ  Ă©tĂ© montrĂ© chez plusieurs espĂšces que quelques gĂšnes architectes (les gĂšnes A, B et C) Ă©taient responsables de l’identitĂ© des organes floraux : sĂ©pales, pĂ©tales, Ă©tamines et pistils. Cependant, les rĂ©seaux de gĂšnes rĂ©gulĂ©s en aval permettant le dĂ©veloppement des organes floraux, et pouvant expliquer une partie de la diversitĂ© des plantes Ă  fleurs demeurent peu connus. L’objectif de mon projet de thĂšse vise Ă  Ă©tudier le dĂ©veloppement de la fleur de façon plus dĂ©taillĂ©e avec comme modĂšle d’étude les fleurs de Petunia x hybrida. Mes travaux de thĂšse se sont organisĂ©s autour de plusieurs axes de recherche, en commençant par l’obtention du transcriptome spĂ©cifique aux pĂ©tales chez le PĂ©tunia. La stratĂ©gie imaginĂ©e a Ă©tĂ© de rĂ©aliser un RNA-Seq sur de jeunes fleurs sauvages et sur une collection unique de mutants homĂ©otiques. Les donnĂ©es obtenues nous ont permis d’identifier une liste de 452 gĂšnes prĂ©sentant un profil d’expression pĂ©tale spĂ©cifique. Afin d’identifier l’implication de ces gĂšnes dans le dĂ©veloppement des pĂ©tales, un crible de gĂ©nĂ©tique inverse a Ă©tĂ© rĂ©alisĂ© sur 98 gĂšnes de la liste (95 mutants gĂ©nĂ©rĂ©s avec le systĂšme transposon et 3gĂšnes avec le systĂšme CRISPR-Cas9). De façon Ă©tonnante, aucun phĂ©notype pĂ©tale n’a pu ĂȘtre associĂ© Ă  la mutation des gĂšnes candidats. Cependant dans la population gĂ©nĂ©rĂ©e pour le crible pĂ©tale, nous avons pu observer une population de plantes sĂ©grĂ©geant pour un phĂ©notype avec des dĂ©fauts dans le dĂ©veloppement floral. Nous avons confirmĂ© que ce phĂ©notype n’était pas associĂ© Ă  un des gĂšnes candidats initialement ciblĂ© et par une mĂ©thode de gĂ©nĂ©tique directe, nous avons identifiĂ© que ce phĂ©notype Ă©tait causĂ© par une insertion de transposon dans un facteur de transcription R2R3-MYB. Dans un autre chapitre, j’ai ciblĂ© plusieurs gĂšnes avec de potentiels rĂŽles dans le dĂ©veloppement de la fleur avec la technique CRISPR-Cas9. Les mutations obtenues dans le gĂšne classe-C PMADS3 ont contribuĂ© Ă  une publication (Morel et al., 2018) ainsi qu’à la description de façon plus approfondie des fonctions des gĂšnes de la classe-C chez le PĂ©tunia. Dans la derniĂšre partie, nous avons montrĂ© que selon la couche cellulaire oĂč le gĂšne DEF (responsable de l’identitĂ© des pĂ©tales) est exprimĂ©, le pĂ©tale ne prĂ©sente pas un phĂ©notype sauvage. La croissance et la forme des pĂ©tales (tube versus limbe) nĂ©cessitent l’intervention et la coordination de plusieurs couches cellulaires (L1, L2 et L3)

    The Floral C-Lineage Genes Trigger Nectary Development in Petunia and Arabidopsis

    No full text
    International audienceTo attract insects, flowers produce nectar, an energy-rich substance secreted by specialized organs called nectaries. For Arabidopsis thaliana, a rosid species with stamen-associated nectaries, the floral B-, C-, and E- functions were proposed to redundantly regulate nectary development. Here we investigated the molecular basis of carpel-associated nectary development in the asterid species Petunia hybrida. We show that its euAGAMOUS (euAG) and PLENA (PLE) C-lineage MADS-box proteins are essential for nectary development, while their overexpression is sufficient to induce ectopic nectaries on sepals. Furthermore, we demonstrate that Arabidopsis nectary development also fully depends on euAG/PLE C-lineage genes. In turn, we show that petunia nectary development depends on two homologs of CRABS CLAW (CRC), a gene previously shown to be required for Arabidopsis nectary development, and demonstrate that CRC expression in both species depends on the members of both euAG/PLE C-sublineages. Therefore, petunia and Arabidopsis employ a similar molecular mechanism underlying nectary development, despite otherwise major differences in the evolutionary trajectory of their C-lineage genes, their distant phylogeny and different nectary positioning. However, unlike in Arabidopsis, petunia nectary development is position-independent within the flower. Finally, we show that the TARGET OF EAT (TOE)-type BLIND ENHANCER (BEN) and APETALA2 (AP2)-type REPRESSOR OF B-FUNCTION (ROB) genes act as major regulators of nectary size

    L'expression spécifique à la couche cellulaire du facteur de transcription homéotique MADS-box PhDEF contribue à la morphogenÚse modulaire des pétales chez le pétunia

    No full text
    International audienceFloral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia x hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly down-regulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layerspecific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals
    corecore