629 research outputs found
The Semi Implicit Gradient Augmented Level Set Method
Here a semi-implicit formulation of the gradient augmented level set method
is presented. By tracking both the level set and it's gradient accurate subgrid
information is provided,leading to highly accurate descriptions of a moving
interface. The result is a hybrid Lagrangian-Eulerian method that may be easily
applied in two or three dimensions. The new approach allows for the
investigation of interfaces evolving by mean curvature and by the intrinsic
Laplacian of the curvature. In this work the algorithm, convergence and
accuracy results are presented. Several numerical experiments in both two and
three dimensions demonstrate the stability of the scheme.Comment: 19 Pages, 14 Figure
Smoothing a Rock by Chipping
We investigate an idealized model for the size reduction and smoothing of a
polygonal rock due to repeated chipping at corners. Each chip is sufficiently
small so that only a single corner and a fraction of its two adjacent sides are
cut from the object in a single chipping event. After many chips have been cut
away, the resulting shape of the rock is generally anisotropic, with facet
lengths and corner angles distributed over a broad range. Although a
well-defined shape is quickly reached for each realization, there are large
fluctuations between realizations.Comment: 7 pages, 10 figures, 2-column revtex4 format; version 2: final
published form in PRE; contains minor changes in response to referee comment
Journal Staff
This book constitutes the refereed proceedings of the 18th Scandinavian Conference on Image Analysis, SCIA 2013, held in Espoo, Finland, in June 2013. The 67 revised full papers presented were carefully reviewed and selected from 132 submissions. The papers are organized in topical sections on feature extraction and segmentation, pattern recognition and machine learning, medical and biomedical image analysis, faces and gestures, object and scene recognition, matching, registration, and alignment, 3D vision, color and multispectral image analysis, motion analysis, systems and applications, human-centered computing, and video and multimedia analysis
Pattern Formation of Glioma Cells: Effects of Adhesion
We investigate clustering of malignant glioma cells. \emph{In vitro}
experiments in collagen gels identified a cell line that formed clusters in a
region of low cell density, whereas a very similar cell line (which lacks an
important mutation) did not cluster significantly. We hypothesize that the
mutation affects the strength of cell-cell adhesion. We investigate this effect
in a new experiment, which follows the clustering dynamics of glioma cells on a
surface. We interpret our results in terms of a stochastic model and identify
two mechanisms of clustering. First, there is a critical value of the strength
of adhesion; above the threshold, large clusters grow from a homogeneous
suspension of cells; below it, the system remains homogeneous, similarly to the
ordinary phase separation. Second, when cells form a cluster, we have evidence
that they increase their proliferation rate. We have successfully reproduced
the experimental findings and found that both mechanisms are crucial for
cluster formation and growth.Comment: 6 pages, 6 figure
Numerical Simulation of Grain Boundary Grooving By Level Set Method
A numerical investigation of grain-boundary grooving by means of a Level Set
method is carried out. An idealized polygranular interconnect which consists of
grains separated by parallel grain boundaries aligned normal to the average
orientation of the surface is considered. The surface diffusion is the only
physical mechanism assumed. The surface diffusion is driven by surface
curvature gradients, and a fixed surface slope and zero atomic flux are assumed
at the groove root. The corresponding mathematical system is an initial
boundary value problem for a two-dimensional Hamilton-Jacobi type equation. The
results obtained are in good agreement with both Mullins' analytical "small
slope" solution of the linearized problem (W.W. Mullins, 1957) (for the case of
an isolated grain boundary) and with solution for the periodic array of grain
boundaries (S.A. Hackney, 1988).Comment: Submitted to the Journal of Computational Physics (19 pages, 8
Postscript figures, 3 tables, 29 references
Level Set Approach to Reversible Epitaxial Growth
We generalize the level set approach to model epitaxial growth to include
thermal detachment of atoms from island edges. This means that islands do not
always grow and island dissociation can occur. We make no assumptions about a
critical nucleus. Excellent quantitative agreement is obtained with kinetic
Monte Carlo simulations for island densities and island size distributions in
the submonolayer regime.Comment: 7 pages, 9 figure
Beeldcultuur, een drieluik.I: Deconstructie van het fenomeen culturele studies
An important process in glass manufacture is the forming of the product. The forming process takes place at high rate, involves extreme temperatures and is characterised by large deformations. The process can be modelled as a coupled thermodynamical/mechanical problem including the interaction between glass, air and equipment. In this paper a general mathematical model for glass forming is derived, which is specified for different forming processes, in particular pressing and blowing. The model should be able to correctly represent the flow of the glass and the energy exchange during the process. Various modelling aspects are discussed for each process, while several key issues, such as the motion of the plunger and the evolution of the glass-air interfaces, are examined thoroughly. Finally, some examples of process simulations for existing simulation tools are provided
Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)
Cell therapy has been shown to be a key clinical therapeutic option for central nervous system diseases or damage. Standardization of clinical cell therapy procedures is an important task for professional associations devoted to cell therapy. The Chinese Branch of the International Association of Neurorestoratology (IANR) completed the first set of guidelines governing the clinical application of neurorestoration in 2011. The IANR and the Chinese Association of Neurorestoratology (CANR) collaborated to propose the current version "Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)". The IANR council board members and CANR committee members approved this proposal on September 1, 2016, and recommend it to clinical practitioners of cellular therapy. These guidelines include items of cell type nomenclature, cell quality control, minimal suggested cell doses, patient-informed consent, indications for undergoing cell therapy, contraindications for undergoing cell therapy, documentation of procedure and therapy, safety evaluation, efficacy evaluation, policy of repeated treatments, do not charge patients for unproven therapies, basic principles of cell therapy, and publishing responsibility
A Prospective Safety Trial of Atorvastatin Treatment to Assess Rebleeding after Spontaneous Intracerebral Hemorrhage: A Serial MRI Investigation
AIM: This study was designed to determine any rebleeding after atorvastatin treatment following spontaneous intracerebral hemorrhage (ICH) in a prospective safety trial.
PATIENTS: Atorvastatin (80 mg/day) therapy was initiated in 6 patients with primary ICH with admission Glasgow Coma Score (GCS) \u3e5 within 24 hours of ictus and continued for 7 days, with the dose tapered and treatment terminated over the next 5 days. Patients were studied longitudinally by multiparametric magnetic resonance imaging (MRI) at three time points: acute (3 to 5 days), subacute (4 to 6 weeks) and chronic (3 to 4 months). Imaging sequences included T1, T2-weighted imaging (T2WI), diffusion tensor imaging (DTI) and contrast-enhanced MRI measures of cerebral perfusion, blood volume and blood-brain barrier (BBB) permeability. Susceptibility weighted imaging (SWI) was used to identify primary ICH and to check for secondary rebleeding. Final outcome was assessed using Glasgow Outcome Score (GOS) at 3-4 months.
RESULTS: Mean admission GCS was 13.2±4.0 and mean GOS at 3 months was 4.5±0.6. Hemorrhagic lesions were segmented into core and rim areas. Mean lesion volumes decreased significantly between the acute and chronic study time points (p=0.008). Average ipsilateral hemispheric tissue loss at 3 to 4 months was 11.4±4.6 cm3. MRI showed acutely reduced CBF (p=0.004) and CBV (p=0.002) in the rim, followed by steady normalization. Apparent diffusion coefficient of water (ADC) in the rim demonstrated no alterations at any of the time points (p\u3e0.2). The T2 values were significantly elevated in the rim acutely (p=0.02), but later returned to baseline. The ICH core showed sustained low CBF and CBV values concurrent with a small reduction in ADC acutely, but significant ADC elevation at the end suggestive of irreversible injury.
CONCLUSION: Despite the presence of a small, probably permanent, cerebral lesion in the ICH core, no patients exhibited post-treatment rebleeding. These data suggest that larger, Phase 2 trials are warranted to establish long term clinical safety of atorvastatin in spontaneous ICH
Waste Clearance in the Brain
Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented
- …
