Here a semi-implicit formulation of the gradient augmented level set method
is presented. By tracking both the level set and it's gradient accurate subgrid
information is provided,leading to highly accurate descriptions of a moving
interface. The result is a hybrid Lagrangian-Eulerian method that may be easily
applied in two or three dimensions. The new approach allows for the
investigation of interfaces evolving by mean curvature and by the intrinsic
Laplacian of the curvature. In this work the algorithm, convergence and
accuracy results are presented. Several numerical experiments in both two and
three dimensions demonstrate the stability of the scheme.Comment: 19 Pages, 14 Figure