949 research outputs found

    Rejoinder: Harold Jeffreys's Theory of Probability Revisited

    Full text link
    We are grateful to all discussants of our re-visitation for their strong support in our enterprise and for their overall agreement with our perspective. Further discussions with them and other leading statisticians showed that the legacy of Theory of Probability is alive and lasting. [arXiv:0804.3173]Comment: Published in at http://dx.doi.org/10.1214/09-STS284REJ the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Comments on "Particle Markov chain Monte Carlo" by C. Andrieu, A. Doucet, and R. Hollenstein

    Full text link
    This is the compilation of our comments submitted to the Journal of the Royal Statistical Society, Series B, to be published within the discussion of the Read Paper of Andrieu, Doucet and Hollenstein.Comment: 7 pages, 4 figure

    In praise of the referee

    Full text link
    There has been a lively debate in many fields, including statistics and related applied fields such as psychology and biomedical research, on possible reforms of the scholarly publishing system. Currently, referees contribute so much to improve scientific papers, both directly through constructive criticism and indirectly through the threat of rejection. We discuss ways in which new approaches to journal publication could continue to make use of the valuable efforts of peer reviewers.Comment: 13 page

    Bayesian optimization using sequential Monte Carlo

    Full text link
    We consider the problem of optimizing a real-valued continuous function ff using a Bayesian approach, where the evaluations of ff are chosen sequentially by combining prior information about ff, which is described by a random process model, and past evaluation results. The main difficulty with this approach is to be able to compute the posterior distributions of quantities of interest which are used to choose evaluation points. In this article, we decide to use a Sequential Monte Carlo (SMC) approach

    Properties of Nested Sampling

    Full text link
    Nested sampling is a simulation method for approximating marginal likelihoods proposed by Skilling (2006). We establish that nested sampling has an approximation error that vanishes at the standard Monte Carlo rate and that this error is asymptotically Gaussian. We show that the asymptotic variance of the nested sampling approximation typically grows linearly with the dimension of the parameter. We discuss the applicability and efficiency of nested sampling in realistic problems, and we compare it with two current methods for computing marginal likelihood. We propose an extension that avoids resorting to Markov chain Monte Carlo to obtain the simulated points.Comment: Revision submitted to Biometrik

    Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes

    Full text link
    SMC (Sequential Monte Carlo) is a class of Monte Carlo algorithms for filtering and related sequential problems. Gerber and Chopin (2015) introduced SQMC (Sequential quasi-Monte Carlo), a QMC version of SMC. This paper has two objectives: (a) to introduce Sequential Monte Carlo to the QMC community, whose members are usually less familiar with state-space models and particle filtering; (b) to extend SQMC to the filtering of continuous-time state-space models, where the latent process is a diffusion. A recurring point in the paper will be the notion of dimension reduction, that is how to implement SQMC in such a way that it provides good performance despite the high dimension of the problem.Comment: To be published in the proceedings of MCMQMC 201

    On Particle Learning

    Full text link
    This document is the aggregation of six discussions of Lopes et al. (2010) that we submitted to the proceedings of the Ninth Valencia Meeting, held in Benidorm, Spain, on June 3-8, 2010, in conjunction with Hedibert Lopes' talk at this meeting, and of a further discussion of the rejoinder by Lopes et al. (2010). The main point in those discussions is the potential for degeneracy in the particle learning methodology, related with the exponential forgetting of the past simulations. We illustrate in particular the resulting difficulties in the case of mixtures.Comment: 14 pages, 9 figures, discussions on the invited paper of Lopes, Carvalho, Johannes, and Polson, for the Ninth Valencia International Meeting on Bayesian Statistics, held in Benidorm, Spain, on June 3-8, 2010. To appear in Bayesian Statistics 9, Oxford University Press (except for the final discussion

    Harold Jeffreys's Theory of Probability Revisited

    Full text link
    Published exactly seventy years ago, Jeffreys's Theory of Probability (1939) has had a unique impact on the Bayesian community and is now considered to be one of the main classics in Bayesian Statistics as well as the initiator of the objective Bayes school. In particular, its advances on the derivation of noninformative priors as well as on the scaling of Bayes factors have had a lasting impact on the field. However, the book reflects the characteristics of the time, especially in terms of mathematical rigor. In this paper we point out the fundamental aspects of this reference work, especially the thorough coverage of testing problems and the construction of both estimation and testing noninformative priors based on functional divergences. Our major aim here is to help modern readers in navigating in this difficult text and in concentrating on passages that are still relevant today.Comment: This paper commented in: [arXiv:1001.2967], [arXiv:1001.2968], [arXiv:1001.2970], [arXiv:1001.2975], [arXiv:1001.2985], [arXiv:1001.3073]. Rejoinder in [arXiv:0909.1008]. Published in at http://dx.doi.org/10.1214/09-STS284 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Discussions on "Riemann manifold Langevin and Hamiltonian Monte Carlo methods"

    Full text link
    This is a collection of discussions of `Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead, to appear in the Journal of the Royal Statistical Society, Series B.Comment: 6 pages, one figur

    Kernel Sequential Monte Carlo

    Get PDF
    We propose kernel sequential Monte Carlo (KSMC), a framework for sampling from static target densities. KSMC is a family of sequential Monte Carlo algorithms that are based on building emulator models of the current particle system in a reproducing kernel Hilbert space. We here focus on modelling nonlinear covariance structure and gradients of the target. The emulator’s geometry is adaptively updated and subsequently used to inform local proposals. Unlike in adaptive Markov chain Monte Carlo, continuous adaptation does not compromise convergence of the sampler. KSMC combines the strengths of sequental Monte Carlo and kernel methods: superior performance for multimodal targets and the ability to estimate model evidence as compared to Markov chain Monte Carlo, and the emulator’s ability to represent targets that exhibit high degrees of nonlinearity. As KSMC does not require access to target gradients, it is particularly applicable on targets whose gradients are unknown or prohibitively expensive. We describe necessary tuning details and demonstrate the benefits of the the proposed methodology on a series of challenging synthetic and real-world examples
    • …
    corecore