Published exactly seventy years ago, Jeffreys's Theory of Probability (1939)
has had a unique impact on the Bayesian community and is now considered to be
one of the main classics in Bayesian Statistics as well as the initiator of the
objective Bayes school. In particular, its advances on the derivation of
noninformative priors as well as on the scaling of Bayes factors have had a
lasting impact on the field. However, the book reflects the characteristics of
the time, especially in terms of mathematical rigor. In this paper we point out
the fundamental aspects of this reference work, especially the thorough
coverage of testing problems and the construction of both estimation and
testing noninformative priors based on functional divergences. Our major aim
here is to help modern readers in navigating in this difficult text and in
concentrating on passages that are still relevant today.Comment: This paper commented in: [arXiv:1001.2967], [arXiv:1001.2968],
[arXiv:1001.2970], [arXiv:1001.2975], [arXiv:1001.2985], [arXiv:1001.3073].
Rejoinder in [arXiv:0909.1008]. Published in at
http://dx.doi.org/10.1214/09-STS284 the Statistical Science
(http://www.imstat.org/sts/) by the Institute of Mathematical Statistics
(http://www.imstat.org