3,802 research outputs found
Superconductivity and Magnetism in REFeAsO1-xFx (RE=Rare Earth Elements)
Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium
(GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been
prepared via conventional solid state reaction at ambient pressure. The
non-yttrium substituted oxypnictide show superconducting transition as high as
43.9 K from temperature dependent resistance measurements with the Meissner
effect observed at a lower temperature of 40.8 K from temperature dependent
magnetization measurements. By replacing a small amount of gadolinium with
yttrium Tc was observed to be lowered by 10 K which might be caused by a change
in the electronic or magnetic structures since the crystal structure was not
altered.Comment: 4 pages, 4 figures, Journal of Physics: Conference Series
(Proceedings in the LT25 Low Temperature Physics Conference) Submitte
Improvement in measurement accuracy for hybrid scanner
The capability to provide dense three-dimensional (3D) data (point clouds) at high speed and at high accuracy has made terrestrial laser scanners (TLS) widely used for many
purposes especially for documentation, management and analysis. However, similar to other 3D sensors, proper understanding regarding the error sources is necessary to ensure high quality data. A procedure known as calibration is employed to evaluate these errors. This process is crucial for TLS in order to make it suitable for accurate 3D applications (e.g. industrial measurement, reverse engineering and monitoring). Two calibration procedures
available for TLS: 1) component, and 2) system calibration. The requirements of special laboratories and tools which are not affordable by most TLS users have become principle
drawback for component calibration. In contrast, system calibration only requires a room with appropriate targets. By employing optimal network configuration, this study has performed system calibration through self-calibration for Leica ScanStation C10 scanner. A laboratory with dimensions of 15.5m x 9m x 3m and 138 well-distributed planar targets were used to derive four calibration parameters. Statistical analysis (e.g. t-test) has shown that only two
calculated parameters, the constant rangefinder offset error (0.7mm) and the vertical circle index error (-45.4inch were significant for the calibrated scanner. Photogrammetric technique was utilised to calibrate the 3D test points at the calibration field. By using the test points, the residual pattern of raw data and self-calibration results were plotted into the graph to visually demonstrate the improvement in accuracy for Leica ScanStation C10 scanner
A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time
We study the stability of static as well as of rotating and charged black
holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical
horizon topology. We observe a non-linear instability related to the
condensation of a charged, tachyonic scalar field and construct "hairy" black
hole solutions of the full system of coupled Einstein, Maxwell and scalar field
equations. We observe that the limiting solution for small horizon radius is
either a hairy soliton solution or a singular solution that is not a regular
extremal solution. Within the context of the gauge/gravity duality the
condensation of the scalar field describes a holographic
conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions
extended; v3: matches version accepted for publication in JHE
PT-Symmetric Electronics
We show both theoretically and experimentally that a pair of inductively
coupled active LRC circuits (dimer), one with amplification and another with an
equivalent amount of attenuation, display all the features which characterize a
wide class of non-Hermitian systems which commute with the joint parity-time PT
operator: typical normal modes, temporal evolution, and scattering processes.
Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric
Hamiltonian, which provides important insight for understanding the behavior of
the system. When the PT-dimer is coupled to transmission lines, the resulting
scattering signal reveals novel features which reflect the PT-symmetry of the
scattering target. Specifically we show that the device can show two different
behaviors simultaneously, an amplifier or an absorber, depending on the
direction and phase relation of the interrogating waves. Having an exact
theory, and due to its relative experimental simplicity, PT-symmetric
electronics offers new insights into the properties of PT-symmetric systems
which are at the forefront of the research in mathematical physics and related
fields.Comment: 17 pages, 7 figure
Electrospun nanofiber membranes as ultrathin flexible supercapacitors
A highly flexible electrochemical supercapacitor electrode was developed with a novel metal oxide-reinforced nanofiber electrode by utilizing a solution-based electrospinning technique. The facile fabrication steps involved the introduction of metal precursors into a polymeric solution, which was subjected to an in situ electrospinning process. The electrospun polymeric web with metallic ingredients was then subjected to an oxidative stabilization process that induced the formation of metal oxide nanoparticles within the polymer structure. Finally, the metal oxide nanoparticles incorporated with nanofibers were obtained using a carbonization process, thus converting the polymer backbones into a carbon-rich conductive nanofiber structure. The fabricated nanofibers were decorated and implanted with metal oxide nanoparticles that had a surface-decorated structure morphology due to the solubility of the precursors in the reaction solution. The electrochemical performance of the fabricated metal oxide reinforced with nanofiber electrodes was investigated as an electrochemical system, and the novel morphology significantly improved the specific capacitance compared to a pristine carbon nanofiber membrane. As a result of the uniform dispersion of metal oxide nanoparticles throughout the surface of the nanofibers, the overall capacitive behavior of the membrane was enhanced. Furthermore, a fabricated free-standing flexible device that utilized the optimized nanofiber electrode demonstrated high stability even after it was subjected to various bending operations and curvatures. These promising results showed the potential applications of these lightweight, conductive nanofiber electrodes in flexible and versatile electronic devices
High accuracy mobile robot positioning using external large volume metrology instruments
A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis
Development of FRET-Based Assays in the Far-Red Using CdTe Quantum Dots
Colloidal quantum dots (QDs) are now commercially available in a biofunctionalized form, and Förster resonance energy transfer (FRET) between bioconjugated dots and fluorophores within the visible range has been observed. We are particularly interested in the far-red region, as from a biological perspective there are benefits in pushing to ∼700 nm to minimize optical absorption (ABS) within tissue and to avoid cell autofluorescence. We report on FRET between streptavidin- (STV-) conjugated CdTe quantum dots, Qdot705-STV, with biotinylated DY731-Bio fluorophores in a donor-acceptor assay. We also highlight the changes in DY731-Bio absorptivity during the streptavidin-biotin binding process which can be attributed to the structural reorientation. For fluorescence beyond 700 nm, different alloy compositions are required for the QD core and these changes directly affect the fluorescence decay dynamics producing a marked biexponential decay with a long-lifetime component in excess of 100 nanoseconds. We compare the influence of the two QD relaxation routes upon FRET dynamics in the presence of DY731-Bio
Enhancing temperature sensitivity using cyclic polybutylene terephthalate- (c-PBT-) coated fiber bragg grating
A polybutylene terephthalate (c-PBT) coating for enhancing the temperature sensitivity of a fiber Bragg grating- (FBG-) based sensor is proposed and demonstrated. The coating is seen to increase the sensitivity of the proposed sensor by a factor of approximately 11 times as compared to a bare FBG, giving a Bragg wavelength shift of 0.11 nm/°C with an operating temperature ranging from 30°C to 87°C. The proposed sensor is also easy to fabricate as compared to other similarly coated FBG sensors, giving it a significant advantage for field applications with the added advantage of being easily reformed to fit various housings, making it highly desirable for multiple real-world applications
Superconductivity in Yttrium Iron Oxyarsenide System
Iron-based oxypnictides substituted with yttrium have been prepared via a
conventional solid state reaction. The product after first 50 hours of reaction
showed diamagnetic-like transition at around 10 K but was not superconducting,
while additional 72 hours of high temperature heat treatment was required to
yield superconducting sample which was doped with fluoride. Temperature
dependence of the susceptibility shows both screening and Meissner effect at
around 10 K, while resistance as a function of temperature displayed a drop at
around the same temperature.Comment: 4 pages, 4 figures, Journal of Physics: Conference Series
(Proceedings in the LT25 Low Temperature Physics Conference), Accepte
Investigation of the Hemodynamic Effect of Stent Wires on Renal Arteries in Patients with Abdominal Aortic Aneurysms Treated with Suprarenal Stent-Grafts
The purpose of the study was to investigate the hemodynamic effect of stent struts (wires) on renal arteries in patients with abdominal aortic aneurysms (AAAs) treated with suprarenal stent-grafts. Two sample patients with AAA undergoing multislice CT angiography pre- and postsuprarenal fixation of stent-grafts were selected for inclusion in the study. Eight juxtarenal models focusing on the renal arteries were generated from the multislice CT datasets. Four types of configurations of stent wires crossing the renal artery ostium were simulated in the segmented aorta models: a single wire crossing centrally, a single wire crossing peripherally, a V-shaped wire crossing centrally, and multiple wires crossing peripherally. The blood flow pattern, flow velocity, wall pressure, and wall shear stress at the renal arteries pre- and post-stent-grafting were analyzed and compared using a two-way fluid structure interaction analysis. The stent wire thickness was simulated with a diameter of 0.4, 1.0, and 2.0 mm, and hemodynamic analysis was performed at different cardiac cycles. The interference of stent wires with renal blood flow was mainly determined by the thickness of stent wires and the type of configuration of stent wires crossing the renal ostium. The flow velocity was reduced by 20–30% in most of the situations when the stent wire thickness increased to 1.0 and 2.0 mm. Of the four types of configuration, the single wire crossing centrally resulted in the highest reduction of flow velocity, ranging from 21% to 28.9% among three different wire thicknesses. Wall shear stress was also dependent on the wire thickness, which decreased significantly when the wire thickness reached 1.0 and 2.0 mm. In conclusion, our preliminary study showed that the hemodynamic effect of suprarenal stent wires in patients with AAA treated with suprarenal stent-grafts was determined by the thickness of suprarenal stent wires. Research findings in our study are useful for follow-up of patients treated with suprarenal stent-grafts to ensure long-term safety of the suprarenal fixation
- …