1,081 research outputs found

    Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus

    Get PDF
    A data-driven model is used to analyse the global effects of biodiesel on the energy–water–food (EWF) nexus, and to understand the complex environmental correlation. Several criteria to measure the sustainability of biodiesel and four main limiting factors for biodiesel production are discussed in this paper. The limiting factors includes water stress, food stress, feedstock quantity and crude oil price. The 155-country model covers crude oil prices ranging from USD10/bbl to USD160/bbl, biodiesel refinery costs ranging from -USD0.30/L to USD0.30/L and 45 multi-generation biodiesel feedstocks. The model is capable of ascertaining changes arising from biodiesel adoption in terms of light-duty diesel engine emissions (NO, CO, UHC and smoke opacity), water stress index (WSI), dietary energy supply (DES), Herfindahl–Hirschman index (HHI) and short-term energy security. With the addition of potential biodiesel production, the renewable energy sector of global primary energy profile can increase by 0.43%, with maximum increment up to 10.97% for Malaysia. At current crude oil price of USD75/bbl and refinery cost of USD0.1/L, only Benin, Ireland and Togo can produce biodiesel profitably. The model also shows that water requirement varies non-linearly with multi-feedstock biodiesel production as blending ratio increases. Out of the 155 countries, biodiesel production is limited by feedstock quantity for 82 countries, 47 are limited by crude oil price, 20 by water stress and 6 by food stress. The results provide insights for governments to set up environmental policy guidelines, in implementing biodiesel technology as a cleaner alternative to diesel

    Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon

    Get PDF
    Microwave pyrolysis using a well-mixed bed of activated carbon as both the microwave absorber and reaction bed was investigated for its potential to recover useful products from waste palm cooking oil – a cooking oil widely used in Asia. The carbon bed provided rapid heating (∼18 °C/min) and a localized reaction hot zone that thermally promoted extensive pyrolysis cracking of the waste oil at 450 °C, leading to increased production of a biofuel product in a process taking less than 25 min. It also created a reducing reaction environment that prevented the formation of undesirable oxidized compounds in the biofuel. The pyrolysis produced a biofuel product that is low in oxygen, free of sulphur, carboxylic acid and triglycerides, and which also contains light C10_{10}-C15_{15} hydrocarbons and a high calorific value nearly comparable to diesel fuel, thus showing great potential to be used as fuel. This pyrolysis approach offers an attractive alternative to transesterification that avoids the use of solvents and catalysts, and the need to remove free fatty acids and glycerol from the hydrocarbon product. The pyrolysis apparatus operated with an electrical power input of 1.12 kW was capable of producing a biofuel with an energy content equivalent to about 3 kW, showing a positive energy ratio of 2.7 and ≥73% recovery of the energy input to the system. The results show that the pyrolysis approach has huge potential as a technically and energetically viable means for the recovery of biofuels from the waste oil.The authors acknowledge the financial support by the Ministry of Science, Technology and Innovation and the Ministry of Higher Education Malaysia for the conduct of the research under the E-Science fund (UMT/RMC/SF/13/52072(5), Vot 52072) and the FRGS grant (FRGS/1/2016/TK07/UMT/02/3, Vot 59434).This is the author accepted manuscript. The final version is available from Elsevier via https://doi.org/10.1016/j.energy.2016.09.07

    Energy Generation from Palm Oil Mill Effluent (POME): The Environmental Impact Perspective

    Get PDF
    Palm oil is the most commonly used vegetable oil and is found in consumer products ranging from soap and chocolate to cooking oil. Approximately 90 % of global palm oil is supplied by Malaysia and Indonesia. In 2018, Malaysia and Indonesia set a target to increase their palm oil production to approximately 37.8 Mt and 20.5 Mt. It is anticipated that the palm oil residues generated from the production process will also increase. Palm oil mill residues such as oil palm fronds, oil palm trunks, palm oil mill effluent (POME), mesocarp fibres, palm kernel shells and empty fruit bunches have emerging potential to be converted into value-added products. This study focuses on POME because it has the potential to be used for the generation of renewable energy and Malaysia aims to utilise a greater amount of affordable, clean energy in line with the United Nations’ Sustainable Development Goals. To this end, this study analyses and compares the CO₂ equivalent (CO₂-eq) of two palm oil mills (POMs 1 and 2) that use different POME treatment technologies, namely the covered lagoon bio-digester (CLB; POM 1) and the continuous stirred tank reactor (CSTR; POM 2) systems. The results of the analysis show that POM 1 produces 1,077.67 kg CO₂-eq, which is lower than that produced by POM 2 which emits 1,429.28 kg CO₂-eq

    A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

    Full text link
    We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tachyonic scalar field and construct "hairy" black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions extended; v3: matches version accepted for publication in JHE

    Thermodynamical Metrics and Black Hole Phase Transitions

    Full text link
    An important phase transition in black hole thermodynamics is associated with the divergence of the specific heat with fixed charge and angular momenta, yet one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's energy metric reveals this phase transition. In this paper, we introduce a new thermodynamical metric based on the Hessian matrix of several free energy. We demonstrate, by studying various charged and rotating black holes, that the divergence of the specific heat corresponds to the curvature singularity of this new metric. We further investigate metrics on all thermodynamical potentials generated by Legendre transformations and study correspondences between curvature singularities and phase transition signals. We show in general that for a system with n-pairs of intensive/extensive variables, all thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional space. We also generalize the Ruppeiner metrics and they are all conformal to the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished and the Hawking-Page phase transition clarified; to appear in JHE

    Conformal Symmetry of a Black Hole as a Scaling Limit: A Black Hole in an Asymptotically Conical Box

    Full text link
    We show that the previously obtained subtracted geometry of four-dimensional asymptotically flat multi-charged rotating black holes, whose massless wave equation exhibit SL(2,R)×SL(2,R)×SO(3)SL(2,\R) \times SL(2,\R) \times SO(3) symmetry may be obtained by a suitable scaling limit of certain asymptotically flat multi-charged rotating black holes, which is reminiscent of near-extreme black holes in the dilute gas approximation. The co-homogeneity-two geometry is supported by a dilation field and two (electric) gauge-field strengths. We also point out that these subtracted geometries can be obtained as a particular Harrison transformation of the original black holes. Furthermore the subtracted metrics are asymptotically conical (AC), like global monopoles, thus describing "a black hole in an AC box". Finally we account for the the emergence of the SL(2,R)×SL(2,R)×SO(3)SL(2,\R) \times SL(2,\R) \times SO(3) symmetry as a consequence of the subtracted metrics being Kaluza-Klein type quotients of AdS3×4S3 AdS_3\times 4 S^3. We demonstrate that similar properties hold for five-dimensional black holes.Comment: Sections 3 and 4 significantly augmente

    A soliton menagerie in AdS

    Full text link
    We explore the behaviour of charged scalar solitons in asymptotically global AdS4 spacetimes. This is motivated in part by attempting to identify under what circumstances such objects can become large relative to the AdS length scale. We demonstrate that such solitons generically do get large and in fact in the planar limit smoothly connect up with the zero temperature limit of planar scalar hair black holes. In particular, for given Lagrangian parameters we encounter multiple branches of solitons: some which are perturbatively connected to the AdS vacuum and surprisingly, some which are not. We explore the phase space of solutions by tuning the charge of the scalar field and changing scalar boundary conditions at AdS asymptopia, finding intriguing critical behaviour as a function of these parameters. We demonstrate these features not only for phenomenologically motivated gravitational Abelian-Higgs models, but also for models that can be consistently embedded into eleven dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated appendice

    Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques

    Get PDF
    This paper begins with a review on the current techniques used for the treatment and recovery of waste oil, which is then followed by an extensive review of the recent achievements in the sustainable development and utilization of pyrolysis techniques in energy recovery from waste oils. The advantages and limitations shown by the use of pyrolysis technique and other current techniques were discussed along with the future research that can be performed on the pyrolysis of waste oil. It was revealed that the current techniques (transesterification, hydrotreating, gasification, solvent extraction, and membrane technology) are yet to be sustainable or completely feasible for waste oil treatment and recovery. It was established that pyrolysis techniques offer a number of advantages over other existing techniques in recovering both the energetic and chemical value of waste oil by generating potentially useful pyrolysis products suitable for future reuse. In particular, microwave pyrolysis shows a distinct advantage in providing a rapid and energy-efficient heating compared to conventional pyrolysis techniques, and thus facilitating increased production rates. It was found that microwave pyrolysis of waste oil showed good performance with respect to product yield, reaction time, energy consumption, and product quality, and thus showing exceptional promise as a sustainable means for energy recovery from waste oils. Nevertheless, it was revealed that some important characteristics of the pyrolysis process have yet to be fully investigated. It was thus concluded that more studies are needed to extend existing understanding in the optimal reaction and process parameters in order to develop the pyrolysis technology to be a sustainable and commercially viable route for energy recovery from problematic waste oils.The authors acknowledges the financial support by Ministry of Science, Technology, and Innovation Malaysia (MOSTI), Ministry of Higher Education Malaysia (MOHE), and Universiti Malaysia Terengganu for the conduct of the research under the E-Science fund (UMT/RMC/SF/13/52072(5), Vot no.: 52072), the Fundamental Research Grant Scheme (Project no.: FRGS/1/2013/TK05/UMT/02/2, Vot no.: 59296), and the Research Acculturation Grant Scheme (Project no.: RAGS/2012/UMT/TK07/3, Vot no.: 57085).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.rser.2015.09.00

    Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties

    Get PDF
    Used frying oil (UFO), a waste produced in large volume each year worldwide, represents a potential resource for biofuel production rather than a disposal problem for modern society. Pyrolysis technique using microwave heating offers a promising approach for the conversion of UFO into biofuel products with improved properties. In this study, pyrolysis of UFO was performed by contacting with a bed of microwave absorbents heated by microwave radiation. The pyrolysis approach was examined using different materials as the reaction bed, comprising particulate carbon, activated carbon and mesoporous aluminosilicate (MCM-41). The use of particulate and activated carbon as the reaction bed provided a fast heating rate and extensive cracking capacity to pyrolyze the used oil, thus showing favorable features that could lead to short process time and less energy usage. This resulted in a production of a high yield of a biofuel product (up to 73 wt%) in a process taking less than 35 min. The biofuel showed a composition dominated by light C5_{5}-C20_{20} aliphatic hydrocarbons with low amounts of oxygenated compounds (≤11%). In particular, the oil product obtained from activated carbon bed showed a low nitrogen content and was free of carboxylic acid and sulphur. The absence of carboxylic acids with low amounts of oxygenated compounds could reduce the formation of oxygenated by-products that could generate undesirable acidic tar or potentially hazardous sludge in the biofuel during storage. Combined with the detection of a high calorific value (46 MJ/kg) nearly comparable to diesel fuel, the biofuel shows great promise to be upgraded for use as a ‘cleaner’ fuel source with potentially reduced oxygenated by-products plus low or zero emissions of NOx_{x} and SOx_{x} during the use of the fuel in combustion process. This study also revealed that the use of activated carbon bed results in the highest energy recovery (88–90%) from the used frying oil. Our results demonstrated that the use of a microwave-heated reaction bed of activated carbon shows great potential as an improved and sustainable pyrolysis approach that is energy-efficient and timesaving for the recycling of used frying oil into a biofuel product with desirable properties. This pyrolysis approach provides an alternative to transesterification that avoids the use of solvents and catalysts, and thus could be developed further as a promising route to recycle various types of waste and biomass materials

    Evaluation of the Osteogenic Potential of Growth Factorâ Rich Demineralized Bone Matrix In Vivo

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141502/1/jper0036.pd
    corecore