197 research outputs found

    Phase space analysis of quantum effects in strong field ionisation

    Get PDF
    This thesis explores quantum effects during strong field ionisation, with emphasis on both classical and quantum phase-space interpretational tools. Specifically, this involves investigating the presence of momentum gates during the enhanced ionisation of H₂⁺. These structures cycle through the momentum space without following the time-profile of the external field. By computing autocorrelation functions and Wigner quasiprobability distributions, we establish that momentum gates may occur for static driving fields, and even for no external field at all. Their primary cause is an interference-induced bridging mechanism that occurs if both wells in the molecule are populated. Their cyclic motion in momentum space has a non-classical evolution, as seen from the quantum Liouville equation. Additionally, we employ the quantum trajectory method to seek another criteria for non-classicality. Using an analytical method, we then compute the different eigenfrequencies governing the system in a field-free setting. This provides an in depth understanding that is applied to the time-dependent case. There, the frequency of the quantum bridge, intrinsic to the molecule, is higher than that of the external field. This leads the quasiprobability distribution to sometimes counter-intuitively flow in the direction opposed to the electric-field gradient. These ionisation mechanisms form an optimisation problem that can be controlled using the appropriate molecular targets, driving fields and coherent superposition of states. We investigate the impact of multiple parameters at once by employing machine learning dimensionality reduction techniques. This allows us to disentangle the different effects at play and establish a hierarchy of parameters for controlling ionisation. The features encountered are explained with phase-space arguments and optimal conditions are found for both static and time-dependent fields. The conclusions presented throughout this thesis can in the future be expanded towards multielectron systems, incorporating decoherence and multiple degrees of freedom

    Les Français et la lecture - 2017

    Get PDF
    Selon le baromètre bisannuel Ipsos/CNL, 91% des personnes interrogées déclarent avoir lu au moins un livre au cours des 12 derniers mois. Si le papier demeure le format le plus courant pour 89% des lecteurs, le numérique progresse (+5% par rapport à 2015). À retenir, le développement du livre d\u27occasion et la progression de la vente en ligne au détriment de la librairie, en raison d\u27une méconnaissance du prix unique du livr

    Attoscience in phase space

    Get PDF
    We provide a brief review of how phase space techniques are explored within strong-field and attosecond science. This includes a broad overview of the existing landscape, with focus on strong-field ionisation and rescattering, high-order harmonic generation, stabilisation and free-electron lasers. Furthermore, using our work on the subject, which deals with ionisation dynamics in atoms and diatomic molecules as well as high-order harmonic generation in inhomogeneous fields, we exemplify how such tools can be employed. One may for instance determine qualitatively different phase space dynamics, explore how bifurcations influence ionisation and high-harmonic generation, establish for which regimes classical and quantum correspondence works or fails, and what role different timescales play. Finally, we conclude the review highlighting the importance of the tools available in quantum optics, quantum information and physical chemistry to strong-field laser–matter interaction

    Different time scales in plasmonically enhanced high-order harmonic generation

    Get PDF
    We investigate high-order-harmonic generation in inhomogeneous media for reduced dimensionality models. We perform a phase-space analysis, in which we identify specific features caused by the field inhomogeneity. We compute high-order-harmonic spectra using the numerical solution of the time-dependent Schrödinger equation, and provide an interpretation in terms of classical electron trajectories. We show that the dynamics of the system can be described by the interplay of high-frequency and slow-frequency oscillations, which are given by Mathieu's equations. The latter oscillations lead to an increase in the cutoff energy, and, for small values of the inhomogeneity parameter, take place over many driving-field cycles. In this case, the two processes can be decoupled and the oscillations can be described analytically

    Alternative quantisation condition for wavepacket dynamics in a hyperbolic double well

    Get PDF
    We propose an analytical approach for computing the eigenspectrum and corresponding eigenstates of a hyperbolic double well potential of arbitrary height or width, which goes beyond the usual techniques applied to quasi-exactly solvable models. We map the time-independent Schrödinger equation onto the Heun confluent differential equation, which is solved by using an infinite power series. The coefficients of this series are polynomials in the quantisation parameter, whose roots correspond to the system's eigenenergies. This leads to a quantisation condition that allows us to determine a whole spectrum, instead of individual eigenenergies. This method is then employed to perform an in depth analysis of electronic wave-packet dynamics, with emphasis on intra-well tunneling and the interference-induced quantum bridges reported in a previous publication Chomet et al (2019 New J. Phys. 21 123004). Considering initial wave packets of different widths and peak locations, we compute autocorrelation functions and Wigner quasiprobability distributions. Our results exhibit an excellent agreement with numerical computations, and allow us to disentangle the different eigenfrequencies that govern the phase-space dynamics

    Quantum bridges in phase space: Interference and nonclassicality in strong-field enhanced ionisation

    Get PDF
    We perform a phase-space analysis of strong-field enhanced ionisation in molecules, with emphasis on quantum-interference effects. Using Wigner quasi-probability distributions and the quantum Liouville equation, we show that the momentum gates reported in a previous publication [N. Takemoto and A. Becker, Phys. Rev. A \textbf{84}, 023401 (2011)] may occur for static driving fields, and even for no external field at all. Their primary cause is an interference-induced bridging mechanism that occurs if both wells in the molecule are populated. In the phase-space regions for which quantum bridges occur, the Wigner functions perform a clockwise rotation whose period is intrinsic to the molecule. This evolution is essentially non-classical and non-adiabatic, as it does not follow equienergy curves or field gradients. Quasi-probability transfer via quantum bridges is favoured if the electron's initial state is either spatially delocalised, or situated at the upfield molecular well. Enhanced ionisation results from the interplay of this cyclic motion, adiabatic tunnel ionisation and population trapping. Optimal conditions require minimising population trapping and using the bridging mechanism to feed into ionisation pathways along the field gradient.Comment: 27 pages, 13 figures; some figures have been simplified to comply with the arXiv requirement

    Controlling quantum effects in enhanced strong-field ionisation with machine-learning techniques

    Get PDF
    We study non-classical pathways and quantum interference in enhanced ionisation of diatomic molecules in strong laser fields using machine learning techniques. Quantum interference provides a bridge, which facilitates intramolecular population transfer. Its frequency is higher than that of the field, intrinsic to the system and depends on several factors, for instance the state of the initial wavepacket or the internuclear separation. Using dimensionality reduction techniques, namely t-distributed stochastic neighbour embedding (t-SNE) and principal component analysis (PCA), we investigate the effect of multiple parameters at once and find optimal conditions for enhanced ionisation in static fields, and controlled ionisation release for two-colour driving fields. This controlled ionisation manifests itself as a step-like behaviour in the time-dependent autocorrelation function. We explain the features encountered with phase-space arguments, and also establish a hierarchy of parameters for controlling ionisation via phase-space Wigner quasiprobability flows, such as specific coherent superpositions of states, electron localisation and internuclear-distance ranges.Comment: 39 pages, 21 figure

    Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [Zr-89]Zr-DFO-PEG(5)-Tz

    Get PDF
    The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-ofconcept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-89-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t(1/2) = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [Zr-89]Zr-DFO-PEG S -Tz ([Zr-89]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 +/- 0.2 vs 17.1 +/- 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for Zr-89-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics.Peer reviewe

    Initiation, Establishment, and Maintenance of Heritable MuDR Transposon Silencing in Maize Are Mediated by Distinct Factors

    Get PDF
    Paramutation and transposon silencing are two epigenetic phenomena that have intrigued and puzzled geneticists for decades. Each involves heritable changes in gene activity without changes in DNA sequence. Here we report the cloning of a gene whose activity is required for the maintenance of both silenced transposons and paramutated color genes in maize. We show that this gene, Mop1 (Mediator of paramutation1) codes for a putative RNA-dependent RNA polymerase, whose activity is required for the production of small RNAs that correspond to the MuDR transposon sequence. We also demonstrate that although Mop1 is required to maintain MuDR methylation and silencing, it is not required for the initiation of heritable silencing. In contrast, we present evidence that a reduction in the transcript level of a maize homolog of the nucleosome assembly protein 1 histone chaperone can reduce the heritability of MuDR silencing. Together, these data suggest that the establishment and maintenance of MuDR silencing have distinct requirements
    corecore