2,519 research outputs found
The definability criterions for convex projective polyhedral reflection groups
Following Vinberg, we find the criterions for a subgroup generated by
reflections \Gamma \subset \SL^{\pm}(n+1,\mathbb{R}) and its finite-index
subgroups to be definable over where is an integrally
closed Noetherian ring in the field . We apply the criterions for
groups generated by reflections that act cocompactly on irreducible properly
convex open subdomains of the -dimensional projective sphere. This gives a
method for constructing injective group homomorphisms from such Coxeter groups
to \SL^{\pm}(n+1,\mathbb{Z}). Finally we provide some examples of
\SL^{\pm}(n+1,\mathbb{Z})-representations of such Coxeter groups. In
particular, we consider simplicial reflection groups that are isomorphic to
hyperbolic simplicial groups and classify all the conjugacy classes of the
reflection subgroups in \SL^{\pm}(n+1,\mathbb{R}) that are definable over
. These were known by Goldman, Benoist, and so on previously.Comment: 31 pages, 8 figure
Quantifying the intra-regional precipitation variability in northwestern China over the past 1,400 years
There has been a surge of paleo-climatic/environmental studies of Northwestern China (NW China), a region characterized by a diverse assortment of hydro-climatic systems. Their common approach, however, focuses on "deducing regional resemblance" rather than "exploring regional variance." To date, efforts to produce a quantitative assessment of long-term intra-regional precipitation variability (IRPV) in NW China has been inadequate. In the present study, we base on historical flood/drought records to compile a decadal IRPV index for NW China spanned AD580-1979 and to find its major determinants via wavelet analysis. Results show that our IRPV index captures the footprints of internal hydro-climatic disparity in NW China. In addition, we find distinct similar to 120-200 year periodicities in the IRPV index over the Little Ice Age, which are attributable to the change of hydro-climatic influence of ocean-atmospheric modes during the period. Also, we offer statistical evidence of El Nino Southern Oscillation (Indo-Pacific warm pool sea surface temperature and China-wide land surface temperature) as the prominent multi-decadal to centennial (centennial to multi-centennial) determinant of the IRPV in NW China. The present study contributes to the quantitative validation of the long-term IRPV in NW China and its driving forces, covering the periods with and without instrumental records. It may help to comprehend the complex hydro-climatic regimes in the region.published_or_final_versio
Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria
We demonstrate and explain a simple and efficient way to remove gas bubbles
from liquid-filled microchannels, by integrating a hydrophobic porous membrane
on top of the microchannel. A prototype chip is manufactured in hard,
transparent polymer with the ability to completely filter gas plugs out of a
segmented flow at rates up to 7.4 microliter/s per mm2 of membrane area. The
device involves a bubble generation section and a gas removal section. In the
bubble generation section, a T-junction is used to generate a train of gas
plugs into a water stream. These gas plugs are then transported towards the gas
removal section, where they slide along a hydrophobic membrane until complete
removal. The system has been successfully modeled and four necessary operating
criteria have been determined to achieve a complete separation of the gas from
the liquid. The first criterion is that the bubble length needs to be larger
than the channel diameter. The second criterion is that the gas plug should
stay on the membrane for a time sufficient to transport all the gas through the
membrane. The third criterion is that the gas plug travel speed should be lower
than a critical value: otherwise a stable liquid film between the bubble and
the membrane prevents mass transfer. The fourth criterion is that the pressure
difference across the membrane should not be larger than the Laplace pressure
to prevent water from leaking through the membrane
A new approach for concurrently improving performance of South Korean food waste valorization and renewable energy recovery via dry anaerobic digestion under mesophilic and thermophilic conditions
© 2017 Elsevier Ltd Dry semicontinuous anaerobic digestion (AD) of South Korean food waste (FW) under four solid loading rates (SLRs) (2.30–9.21 kg total solids (TS)/m3 day) and at a fixed TS content was compared between two digesters, one each under mesophilic and thermophilic conditions. Biogas production and organic matter reduction in both digesters followed similar trends, increasing with rising SLR. Inhibitor (intermediate products of the anaerobic fermentation process) effects on the digesters’ performance were not observed under the studied conditions. In all cases tested, the digesters’ best performance was achieved at the SLR of 9.21 kg TS/m3 day, with 74.02% and 80.98% reduction of volatile solids (VS), 0.87 and 0.90 m3 biogas/kg VSremoved, and 0.65 (65% CH4) and 0.73 (60.02% CH4) m3 biogas/kg VSfed, under mesophilic and thermophilic conditions, respectively. Thermophilic dry AD is recommended for FW treatment in South Korea because it is more efficient and has higher energy recovery potential when compared to mesophilic dry AD
Stabilization of monodomain polarization in ultrathin PbTiO3 films
Using in situ high-resolution synchrotron x-ray scattering, the Curie temperature T-C has been determined for ultrathin c-axis epitaxial PbTiO3 films on conducting substrates (SrRuO3 on SrTiO3), with surfaces exposed to a controlled vapor environment. The suppression of T-C was relatively small, even for the thinnest film (1.2 nm). We observe that 180 degrees stripe domains do not form, indicating that the depolarizing field is compensated by free charge at both interfaces. This is confirmed by ab initio calculations that find polar ground states in the presence of ionic adsorbates.open15511
Electric-field controlled spin reversal in a quantum dot with ferromagnetic contacts
Manipulation of the spin-states of a quantum dot by purely electrical means
is a highly desirable property of fundamental importance for the development of
spintronic devices such as spin-filters, spin-transistors and single-spin
memory as well as for solid-state qubits. An electrically gated quantum dot in
the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2,
which is routinely spin-polarized by an applied magnetic field. Using
ferromagnetic electrodes, however, the properties of the quantum dot become
directly spin-dependent and it has been demonstrated that the ferromagnetic
electrodes induce a local exchange-field which polarizes the localized spin in
the absence of any external fields. Here we report on the experimental
realization of this tunneling-induced spin-splitting in a carbon nanotube
quantum dot coupled to ferromagnetic nickel-electrodes. We study the
intermediate coupling regime in which single-electron states remain well
defined, but with sufficiently good tunnel-contacts to give rise to a sizable
exchange-field. Since charge transport in this regime is dominated by the
Kondo-effect, we can utilize this sharp many-body resonance to read off the
local spin-polarization from the measured bias-spectroscopy. We show that the
exchange-field can be compensated by an external magnetic field, thus restoring
a zero-bias Kondo-resonance, and we demonstrate that the exchange-field itself,
and hence the local spin-polarization, can be tuned and reversed merely by
tuning the gate-voltage. This demonstrates a very direct electrical control
over the spin-state of a quantum dot which, in contrast to an applied magnetic
field, allows for rapid spin-reversal with a very localized addressing.Comment: 19 pages, 11 figure
Teaching Medicine to Non-English Speaking Background Learners in a Foreign Country
Teaching abroad exposes medical educators to unfamiliar teaching methods and learning styles that can enhance their overall teaching repertoire. Based on the author’s experience teaching residents for one month at a community hospital in Japan and a review of the non-English speaking background (NESB) educational literature, pedagogical principles and lessons for successful international NESB instruction are outlined. These methods include understanding the dissimilar linguistic, cultural, and academic backgrounds of the learners, emphasizing pace and clarity of speech, presenting a conceptual framework instead of detailed discourse on subjects, and regular visual reinforcement of spoken words. The limitations introduced by the language barrier and the use of interpreters are briefly discussed. As society and institutions of higher learning become more global and multicultural, clinician–educators may benefit from teaching in other countries in order to enhance their teaching skills with NESB learners, both abroad and in their own institutions
Recommended from our members
Dairy consumption and cardiometabolic diseases: systematic review and updated meta-analyses of prospective cohort studies
Purpose of Review Dairy products contain both beneficial and harmful nutrients in relation to cardiometabolic diseases. Here, we
provide the latest scientific evidence regarding the relationship between dairy products and cardiometabolic diseases by
reviewing the literature and updating meta-analyses of observational studies.
Recent Findings We updated our previous meta-analyses of cohort studies on type 2 diabetes, coronary heart disease (CHD), and
stroke with nine studies and confirmed previous results. Total dairy and low-fat dairy (per 200 g/d) were inversely associated with
a 3–4% lower risk of diabetes. Yogurt was non-linearly inversely associatedwith diabetes (RR = 0.86, 95%CI: 0.83–0.90 at 80 g/
d). Total dairy and milk were not associated with CHD (RR~1.0). An increment of 200 g of daily milk intake was associated with
an 8% lower risk of stroke.
Summary The latest scientific evidence confirmed neutral or beneficial associations between dairy products and risk of cardiometabolic
diseases
Upgrading legacy equipment to industry 4.0 through a cyber-physical interface
With the recent developments of Industry 4.0 technologies, maintenance can be improved significantly by making it “smart”, proactive and even self-aware. This paper introduces a new cutting-edge interfacing technology that enables smart active remote maintenance right on the machine in real-time while allowing integration of smart automated decision making and Industrial Internet of Things to upgrade existing legacy equipment through latest Industry 4.0 technology. This interfacing technology enables remote sensing and actuation access to legacy equipment for smart maintenance by entirely non-intrusive means, i.e. the original equipment does not have to be modified. The design was implemented in a real-world manufacturing environment
- …