614 research outputs found

    Enzyme Inhibitor May Offer Dual Protection against Brain Disease

    Get PDF
    Genetic analysis in budding yeast and in cultured human astrocytes reveals that specific histone deacetylase complexes accelerate expansion mutations in DNA triplet repeats

    Wiring Up the Newest Part of the Cortex

    Get PDF

    PAIRing Up Cargo Proteins

    Get PDF

    Excitotoxicity Triggered by Neurobasal Culture Medium

    Get PDF
    Neurobasal defined culture medium has been optimized for survival of rat embryonic hippocampal neurons and is now widely used for many types of primary neuronal cell culture. Therefore, we were surprised that routine medium exchange with serum- and supplement-free Neurobasal killed as many as 50% of postnatal hippocampal neurons after a 4 h exposure at day in vitro 12–15. Minimal Essential Medium (MEM), in contrast, produced no significant toxicity. Detectable Neurobasal-induced neuronal death occurred with as little as 5 min exposure, measured 24 h later. D-2-Amino-5-phosphonovalerate (D-APV) completely prevented Neurobasal toxicity, implicating direct or indirect N-methyl-D-aspartate (NMDA) receptor-mediated neuronal excitotoxicity. Whole-cell recordings revealed that Neurobasal but not MEM directly activated D-APV-sensitive currents similar in amplitude to those gated by 1 µM glutamate. We hypothesized that L-cysteine likely mediates the excitotoxic effects of Neurobasal incubation. Although the original published formulation of Neurobasal contained only 10 µM L-cysteine, commercial recipes contain 260 µM, a concentration in the range reported to activate NMDA receptors. Consistent with our hypothesis, 260 µM L-cysteine in bicarbonate-buffered saline gated NMDA receptor currents and produced toxicity equivalent to Neurobasal. Although NMDA receptor-mediated depolarization and Ca2+ influx may support survival of young neurons, NMDA receptor agonist effects on development and survival should be considered when employing Neurobasal culture medium

    Altered mRNA Editing and Expression of Ionotropic Glutamate Receptors after Kainic Acid Exposure in Cyclooxygenase-2 Deficient Mice

    Get PDF
    Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2−/−) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2−/− mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2−/− mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2−/− mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2−/− compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2−/− mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2−/− mice. After KA exposure, COX-2−/− mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2−/− mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the glutamatergic system

    Search for right-handed W bosons in top quark decay

    Full text link
    We present a measurement of the fraction f+ of right-handed W bosons produced in top quark decays, based on a candidate sample of ttˉt\bar{t} events in the lepton+jets decay mode. These data correspond to an integrated luminosity of 230pb^-1, collected by the DO detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. We use a constrained fit to reconstruct the kinematics of the ttˉt\bar{t} and decay products, which allows for the measurement of the leptonic decay angle θ\theta^* for each event. By comparing the cosθ\cos\theta^* distribution from the data with those for the expected background and signal for various values of f+, we find f+=0.00+-0.13(stat)+-0.07(syst). This measurement is consistent with the standard model prediction of f+=3.6x10^-4.Comment: Submitted to Physical Review D Rapid Communications 7 pages, 3 figure

    Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States

    Get PDF
    Using the data accumulated in 2002-2004 with the DO detector in proton-antiproton collisions at the Fermilab Tevatron collider with centre-of-mass energy 1.96 TeV, the branching fractions of the decays B -> \bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0 \mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) = (0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+ \nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) = (0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge conjugated states are always implied.Comment: submitted to Phys. Rev. Let

    Measurement of the Lifetime Difference in the B_s^0 System

    Get PDF
    We present a study of the decay B_s^0 -> J/psi phi We obtain the CP-odd fraction in the final state at time zero, R_perp = 0.16 +/- 0.10 (stat) +/- 0.02 (syst), the average lifetime of the (B_s, B_sbar) system, tau (B_s^0) =1.39^{+0.13}_{-0.16} (stat) ^{+0.01}_{-0.02} (syst) ps, and the relative width difference between the heavy and light mass eigenstates, Delta Gamma/Gamma = (Gamma_L - Gamma_H)/Gamma =0.24^{+0.28}_{-0.38} (stat) ^{+0.03}_{-0.04} (syst). With the additional constraint from the world average of the B_s^0$lifetime measurements using semileptonic decays, we find tau (B_s^0)= 1.39 +/- 0.06 ~ps and Delta Gamma/\Gamma = 0.25^{+0.14}_{-0.15}. For the ratio of the B_s^0 and B^0 lifetimes we obtain tau(B_s^0)/tau(B^0)} = 0.91 +/- 0.09 (stat) +/- 0.003 (syst).Comment: submitted to Phys. Rev. Lett. FERMILAB-PUB-05-324-

    Search for Large Extra Spatial Dimensions in Dimuon Production with the D0 Detector

    Get PDF
    We present the results of a search for the effects of large extra spatial dimensions in ppˉp{\bar p} collisions at s=\sqrt{s} = 1.96 TeV in events containing a pair of energetic muons. The data correspond to 246 \ipb of integrated luminosity collected by the \D0 experiment at the Fermilab Tevatron Collider. Good agreement with the expected background was found, yielding no evidence for large extra dimensions. We set 95% C.L. lower limits on the fundamental Planck scale between 0.85 TeV and 1.27 TeV within several formalisms. These are the most stringent limits achieved in the dimuon channel to date.Comment: 8 pages, 3 figures, 1 table. Published in Phys. Rev. Lett. Minor changes in v2 to match the published versio
    corecore