157 research outputs found

    Molecular epidemiology of Streptococcus equi subsp. Zooepidemicus isolated from thoroughbred horses using multi locus sequence typing (MLST) in Korea

    Get PDF
    Background: Multi Locus Sequence Typing (MLST) is a new global molecular typing method used for analyzing the DNA polymorphisms in bacteria. In this study, using MLST, we analyzed the sequence profiles of Streptococcus (S.) zooepidemicus isolates from the Jeju and Jangsu provinces in South Korea. Objective: This study characterized the molecular epidemiology of S. zooepidemicus infection in Thoroughbred horses using MLST with an aim to control and prevent bacterial endometritis in mares. Methods: A total of 79 S. zooepidemicus isolates were included in this study. Sequencing of the 7 loci for the MLST analysis was performed as described in the MLST website manual (http:// pubmlst.org/szooepidemicus/) with some modifications. For each locus, every unique sequence was assigned a distinct allele number, and each Sequence Type (ST) was defined by a series of 7 integers (the allelic profile) corresponding to the alleles at the 7 loci (arcC, nrdE, proS, spi, tdk, tpi, and yqiL) using the MLST module in the Main Workbench. Results: Among the 79 isolates, 73 different MLST patterns were identified, each corresponding to 1-3 strains. The genetic relationships between the 79 isolates are presented in a dendrogram, and they diverged by up to 11% homology. At 11% homology, three MLST groups, M1, M2, and M3, were identified, and at 26% homology, five subgroups, L1-L5, were observed. We observed various MLST patterns in the strains isolated from Jeju and Jangsu. In addition, by estimating the epidemiological relationships among the strains isolated from Jangsu in 2007 and Jeju in 2009, which had similar MLST patterns, we determined that some strains from Jangsu may have been transported to Jeju. Conclusion: MLST can be used as a framework for determining the epidemiological relationships that form the genetic basis of host and infection site selection. © 2019 Choi et al.1

    Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides

    Get PDF
    Background: Integrin-mediated interaction of neuronal cells with extracellular matrix (ECM) is important for the control of cell adhesion, morphology, motility, and differentiation in both in vitro and in vivo systems. Arg-Gly-Asp (RGD) sequence is one of the most potent integrin-binding ligand found in many native ECM proteins. An elastin-mimetic recombinant protein, TGPG[VGRGD(VGVPG)6]20WPC, referred to as [RGD-V6]20, contains multiple RGD motifs to bind cell-surface integrins. This study aimed to investigate how surface-adsorbed recombinant protein can be used to modulate the behaviors and differentiation of neuronal cells in vitro. For this purpose, biomimetic ECM surfaces were prepared by isothermal adsorption of [RGD-V6]20 onto the tissue culture polystyrene (TCPS), and the effects of protein-coated surfaces on neuronal cell adhesion, spreading, migration, and differentiation were quantitatively measured using N2a neuroblastoma cells.Results: The [RGD-V6]20 was expressed in E. coli and purified by thermally-induced phase transition. N2a cell attachment to either [RGD-V6]20 or fibronectin followed hyperbolic binding kinetics saturating around 2 μM protein concentration. The apparent maximum cell binding to [RGD-V6]20 was approximately 96% of fibronectin, with half-maximal adhesion on [RGD-V6]20 and fibronectin occurring at a coating concentration of 2.4 × 10-7 and 1.4 × 10-7 M, respectively. The percentage of spreading cells was in the following order of proteins: fibronectin (84.3% ± 6.9%) > [RGD-V6]20 (42.9% ± 6.5%) > [V7]20 (15.5% ± 3.2%) > TCPS (less than 10%). The migration speed of N2a cells on [RGD-V6]20 was similar to that of cells on fibronectin. The expression of neuronal marker proteins Tuj1, MAP2, and GFAP was approximately 1.5-fold up-regulated by [RGD-V6]20 relative to TCPS. Moreover, by the presence of both [RGD-V6]20 and RA, the expression levels of NSE, TuJ1, NF68, MAP2, and GFAP were significantly elevated.Conclusion: We have shown that an elastin-mimetic protein consisting of alternating tropoelastin structural domains and cell-binding RGD motifs is able to stimulate neuronal cell behaviors and differentiation. In particular, adhesion-induced neural differentiation is highly desirable for neural development and nerve repair. In this context, our data emphasize that the combination of biomimetically engineered recombinant protein and isothermal adsorption approach allows for the facile preparation of bioactive matrix or coating for neural tissue regeneration. © 2012 Jeon et al.; licensee BioMed Central Ltd.1

    Detection of Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV, Decapod Penstylhamaparvovirus 1) in Commodity Red Claw Crayfish (Cherax quadricarinatus) Imported into South Korea

    Get PDF
    Freshwater crayfish, which are cultivated in aquaculture, are economically important for food and ornamental purposes. However, relatively few studies have focused on potentially pathogenic viruses in crayfish compared to in penaeid shrimp. Commodity red claw crayfish (Cherax quadricarinatus; 400 crayfish in 10 batches) and red swamp crayfish (Procambarus clarkii; 40 crayfish in 2 batches) imported into South Korea from Indonesia and China were screened by PCR to detect infectious hypodermal and hematopoietic necrosis virus (IHHNV or Decapod penstylhamaparvovirus 1). IHHNV was detected in tissue samples pooled from nine out of ten batches of red claw crayfish imported from Indonesia. Phylogenetic analysis of PCR amplicons from representative pools clustered the IHHNV strain with infectious-type II sequences commonly detected in Southeast Asian countries rather than with type III strains detected previously in whiteleg shrimp (Penaeus vannamei) cultured in South Korea. IHHNV DNA was detected most frequently in the muscle (eight batches, 66.7% samples), followed by in the hepatopancreas (five batches, 41.7% samples) and gills tissue (three batches, 25.0% samples). These data suggest that red claw crayfish could be a potential carrier of the virus and that quarantine procedures must be strengthened in South Korea to avoid importing infectious types of IHHNV in commodity crustaceans such as red claw crayfish. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1

    Overexpression of hepatic serum amyloid A1 in mice increases IL-17-producing innate immune cells and decreases bone density

    Get PDF
    Serum amyloid A (SAA) is an acute-phase protein produced primarily in the liver that plays a key role in both the initiation and maintenance of inflammation. Rapidly secreted SAA induces neutrophilia at inflammatory sites, initiating inflammation and inducing the secretion of various cytokines, including TNF-α, IL-6, and IL-17. IL-17 is expressed in several inflammatory cells, including innate immune cells such as γδT cells, ILC3 cells, and neutrophils. Increased IL-17 levels exacerbate various inflammatory diseases. Among other roles, IL-17 induces bone loss by increasing receptor activator of nuclear factor-κB ligand (RANKL) secretion, which stimulates osteoclast differentiation. Several studies have demonstrated that chronic inflammation induces bone loss, suggesting a role for SAA in bone health. To test this possibility, we observed an increase in IL-17-producing innate immune cells, neutrophils, and γδT cells in these mice. In 6-month-old animals, we detected increased osteoclast-related gene expression and IL- 17 expression in bone lysates. We also observed an increase in neutrophils that secreted RANKL in the bone marrow of TG mice. Finally, we demonstrated decreased bone mineral density in these transgenic (TG) mice. Our results revealed that the TG mice have increased populations of IL-17-producing innate immune cells, γδT cells, and neutrophils in TG mice. We additionally detected increased RANKL and IL-17 expression in the bone marrow of 6-month-old TG mice. Furthermore, we confirmed significant increases in RANKL-expressing neutrophils in TG mice and decreased bone mineral density. Our results provide evidence that chronic inflammation induced by SAA1 causes bone loss via IL-17-secreting innate immune cells. © 2021 American Society for Biochemistry and Molecular Biology Inc.. All rights reserved.1

    The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type

    Full text link
    The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes

    Quantification of Enterocytozoon hepatopenaei (EHP) in Penaeid Shrimps from Southeast Asia and Latin America Using TaqMan Probe-Based Quantitative PCR

    Get PDF
    We developed a qPCR assay based on the β-tubulin gene sequence for the shrimp microsporidian parasite Enterocytozoon hepatopenaei (EHP). This assay reacted with the hepatopancreas (HP) of EHP-infected shrimps, and the highest copy numbers were found in HP and feces samples from Southeast Asian countries (106–108 copies mg−1), while HP samples from Latin America, Artemia, and EHP-contaminated water showed lower amounts (101–103 copies mg−1 or mL−1 of water). No false positive was found with the normal shrimp genome, live feeds, or other parasitic diseases. This tool will facilitate the management of EHP infection in shrimp farms. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.1

    Hepatic Cellular Distribution of Silica Nanoparticles by Surface Energy Modification

    Get PDF
    The cellular distribution of silica nanoparticles (NPs) in the liver is not well understood. Targeting specific cells is one of the most important issues in NP-based drug delivery to improve delivery efficacy. In this context, the present study analyzed the relative cellular distribution pattern of silica NPs in the liver, and the effect of surface energy modification on NPs. Hydrophobic NP surface modification enhanced NP delivery to the liver and liver sinusoid fFendothelial cells (LSECs). Conversely, hydrophilic NP surface modification was commensurate with targeting hepatic stellate cells (HSCs) rather than other cell types. There was no notable difference in NP delivery to Kupffer cells or hepatocytes, regardless of hydrophilic or hydrophobic NP surface modification, suggesting that both the targeting of hepatocytes and evasion of phagocytosis by Kupffer cells are not associated with surface energy modification of silica NPs. This study provides useful information to target specific cell types using silica NPs, as well as to understand the relationship between NP surface energy and the NP distribution pattern in the liver, thereby helping to establish strategies for cell targeting using various NPs. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.1

    Determination of Malignant and Invasive Predictors in Branch Duct Type Intraductal Papillary Mucinous Neoplasms of the Pancreas: A Suggested Scoring Formula

    Get PDF
    Prediction of malignancy or invasiveness of branch duct type intraductal papillary mucinous neoplasm (Br-IPMN) is difficult, and proper treatment strategy has not been well established. The authors investigated the characteristics of Br-IPMN and explored its malignancy or invasiveness predicting factors to suggest a scoring formula for predicting pathologic results. From 1994 to 2008, 237 patients who were diagnosed as Br-IPMN at 11 tertiary referral centers in Korea were retrospectively reviewed. The patients' mean age was 63.1 ± 9.2 yr. One hundred ninty-eight (83.5%) patients had nonmalignant IPMN (81 adenoma, 117 borderline atypia), and 39 (16.5%) had malignant IPMN (13 carcinoma in situ, 26 invasive carcinoma). Cyst size and mural nodule were malignancy determining factors by multivariate analysis. Elevated CEA, cyst size and mural nodule were factors determining invasiveness by multivariate analysis. Using the regression coefficient for significant predictors on multivariate analysis, we constructed a malignancy-predicting scoring formula: 22.4 (mural nodule [0 or 1]) + 0.5 (cyst size [mm]). In invasive IPMN, the formula was expressed as invasiveness-predicting score = 36.6 (mural nodule [0 or 1]) + 32.2 (elevated serum CEA [0 or 1]) + 0.6 (cyst size [mm]). Here we present a scoring formula for prediction of malignancy or invasiveness of Br-IPMN which can be used to determine a proper treatment strategy

    JAZF1 heterozygous knockout mice show altered adipose development and metabolism

    Get PDF
    Background: Juxtaposed with another zinc finger protein 1 (JAZF1) is associated with metabolic disorders, including type 2 diabetes mellitus (T2DM). Several studies showed that JAZF1 and body fat mass are closely related. We attempted to elucidate the JAZF1 functions on adipose development and related metabolism using in vitro and in vivo models. Results: The JAZF1 expression was precisely regulated during adipocyte differentiation of 3T3-L1 preadipocyte and mouse embryonic fibroblasts (MEFs). Homozygous JAZF1 deletion (JAZF1-KO) resulted in impaired adipocyte differentiation in MEF. The JAZF1 role in adipocyte differentiation was demonstrated by the regulation of PPARγ—a key regulator of adipocyte differentiation. Heterozygous JAZF1 deletion (JAZF1-Het) mice fed a normal diet (ND) or a high-fat diet (HFD) had less adipose tissue mass and impaired glucose homeostasis than the control (JAZF1-Cont) mice. However, other metabolic organs, such as brown adipose tissue and liver, were negligible effect on JAZF1 deficiency. Conclusion: Our findings emphasized the JAZF1 role in adipocyte differentiation and related metabolism through the heterozygous knockout mice. This study provides new insights into the JAZF1 function in adipose development and metabolism, informing strategies for treating obesity and related metabolic disorders. © 2021, The Author(s).1
    corecore