81 research outputs found

    The role of the femoral chordotonal organ in motor control, interleg coordination, and leg kinematics in Drosophila melanogaster

    Get PDF
    Legged locomotion in terrestrial animals is often essential for mating and survival, and locomotor behavior must be robust and adaptable in order to be successful. The behavioral plasticity demonstrated by animals’ ability to locomote across diverse types of terrains and to change their locomotion in a task-dependent manner highlights the flexible and modular nature of locomotor networks. The six legs of insects are under the multi-level control of local networks for each limb and limb joint in addition to over-arching central control of the local networks. These networks, consisting of pattern-generating groups of interneurons, motor neurons, and muscles, receive modifying and reinforcing feedback from sensory structures that encode motor output. Proprioceptors in the limbs monitoring their position and movement provide information to these networks that is essential for the adaptability and robustness of locomotor behavior. In insects, proprioceptors are highly diverse, and the exact role of each type in motor control has yet to be determined. Chordotonal organs, analogous to vertebrate muscle spindles, are proprioceptive stretch receptors that span joints and encode specific parameters of relative movement between body segments. In insects, when leg chordotonal organs are disabled or manipulated, interleg coordination and walking are affected, but the simple behavior of straight walking on a flat surface can still be performed. The femoral chordotonal organ (fCO) is the largest leg proprioceptor and monitors the position and movements of the tibia relative to the femur. It has long been studied for its importance in locomotor and postural control. In Drosophila melanogaster, an ideal model organism due its genetic tractability, investigations into the composition, connectivity, and function of the fCO are still in their infancy. The fCO in Drosophila contains anatomical subgroups, and the neurons within a subgroup demonstrate similar responses to movements about the femur-tibia joint. Collectively, the experiments laid out in this dissertation provide a multi-faceted analysis of the anatomy, connectivity, and functional importance of subgroups of fCO neurons in D. melanogaster. The dissertation is divided into four chapters, representing different aspects of this complex and intriguing system. First, I present a detailed analysis of the composition of the fCO and its connectivity within the peripheral and central nervous systems. I demonstrate that the fCO is made up of anatomically distinct groups of neurons, each with their own unique features in the legs and ventral nerve cord. Second, I investigated the neuropeptide profile of the fCO and demonstrate that some fCO neurons express a susbtance that is known to act as a neuromodulator. Third, I demonstrate the sufficiency of subsets of fCO neurons to elicit reflex responses, highlighting the role of the Drosophila fCO in postural control. Lastly, I take this a step further and look into the functional necessity of these neuronal subsets for intra- and interleg coordination during walking. The importance of the fCO in motor control in D. melanogaster has been considered rather minor, though research into the topic is very limited. In the work laid out herein, I highlight the complexity of the Drosophila fCO and its role in the determination of locomotor behavior

    Understanding the Uninsured: Tailoring Policy Solutions for Different Subpopulations

    Get PDF
    Segments the uninsured into subgroups by legal status, eligibility for public programs such as Medicaid, and income level, and presents various policy options for expanding coverage in each subgroup, including mandates and private market solutions

    Transitions to Justice: Prisoner Reentry as an Opportunity to Confront the Counteract Racism

    Get PDF
    This article discusses the issues facing formerly incarcerated individuals upon reentry from prison into their communities, focusing primarily on the unique challenges faced by African-American males. The article first highlights the strong correlation between incarceration and race: People of color make up a disproportionate percentage of the U.S. prison population, are more likely to receive harsh prison sentences, and are less likely to be found eligible for parole. The article focuses specifically on the challenges facing African-American males as they exit prison and attempt to reenter a society where they will face institutional racism in multiple forms and on multiple levels. A myriad of statistics demonstrates the heightened burden that African-American males bear in searching for employment, accessing government assistance and support, participating in the political process, and escaping the cycle of incarceration. In conclusion, the article proposes a diverse range of solutions to address the unique needs of African- American ex-offenders as they struggle to combat structural racism. The article advocates for innovative reentry strategies - including provision of educational opportunities, increased access to health care and substance abuse treatment, and culturally appropriate job training programs - whose programming expressly targets African Americans as a means to counteract the existing race disparities in the provision of services

    Beef Manure Management With Dirt Lots (2003)

    Get PDF
    Major problems with feedlots in Missouri are due to high rainfall, which produces high volumes of runoff that can pollute streams, and muddy dirt lots, which reduce performance. This publication shows ways to reduce the problem of muddy lots and to prevent stream pollution.New 4/03/3.5

    Considerations of pull-plug sedimentation basin for dairy manure management

    Get PDF
    "Many small dairy farms have limited practical and easy-to-operate options for manure management. A flush system for manure removal is attractive due to reduced chore time and increased barn cleanliness. However, flush systems require greater attention to onsite water management that result from having to store water with high nutrient and solids concentrations. There are several different types of lagoons commonly employed for agricultural use. Lagoons designed for treatment and solids reduction via digestion can be aerobic or facultative/anaerobic. Anaerobic treatment lagoons can be ideal for many agricultural applications when it comes to water and manure management. The lagoon, typically 8-15 feet deep, provides some digestion of manure solids while serving as a holding basin when land application is not possible due to frozen ground or saturated soils. Storage lagoons are another type that aren't designed for the purpose of solids reduction but, rather, for holding water or a water and solids slurry in order to better manage the on-farm water inventory. A portion of lagoon volume is designated for holding solids, regardless of the purpose or type of the lagoon. Solids removal prior to a lagoon may help increase lagoon capacity and reduce, if not eliminate, the need for costly lagoon dredging."--First page.Written by Tim Canter (Extension Specialist, Agricultural Systems Management), Teng Teeh Lim (Associate Professor, Agricultural Systems Management), Troy Chockley (Environmental Engineer, USDA-N)New 10/20Includes bibliographical reference

    Hydrogen Peroxide in Inflammation : Messenger, Guide, and Assassin

    Get PDF
    Starting as a model for developmental genetics, embryology, and organogenesis, the zebrafish has become increasingly popular as a model organism for numerous areas of biology and biomedicine over the last decades.Within haematology, this includes studies on blood cell development and function and the intricate regulatory mechanisms within vertebrate immunity. Here, we review recent studies on the immediate mechanisms mounting an inflammatory response by in vivo analyses using the zebrafish. These recently revealed novel roles of the reactive oxygen species hydrogen peroxide that have changed our view on the initiation of a granulocytic inflammatory response

    Hydrogen Peroxide in Inflammation: Messenger, Guide, and Assassin

    Get PDF
    Starting as a model for developmental genetics, embryology, and organogenesis, the zebrafish has become increasingly popular as a model organism for numerous areas of biology and biomedicine over the last decades. Within haematology, this includes studies on blood cell development and function and the intricate regulatory mechanisms within vertebrate immunity. Here, we review recent studies on the immediate mechanisms mounting an inflammatory response by in vivo analyses using the zebrafish. These recently revealed novel roles of the reactive oxygen species hydrogen peroxide that have changed our view on the initiation of a granulocytic inflammatory response

    Array tomography: Characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure

    Get PDF
    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. LAY DESCRIPTION: To look at immune cells from zebrafish we employed array tomography, a technique where arrays of serial sections deposited on solid substrates are used for imaging. Cell populations were isolated from the different organs of zebrafish involved in haematopoiesis, the production of blood cells. They were chemically fixed and centrifuged to concentrate them in a pellet that was then dehydrated and embedded in resin. Using a custom-built handling device it was possible to place hundreds of serial sections on silicon wafers as well ordered arrays. To image a whole cell at a resolution that would allow identifying all the organelles (i.e. compartments surrounded by membranes) inside the cell, stacks of usually 50–100 images were recorded in a scanning electron microscope (SEM). This recording was either done manually or automatically using the newly released Atlas Array Tomography platform on a ZEISS SEM. For the imaging of the sections a pixel size of about 5 nm was chosen, which defines membrane boundaries very well and allows segmentation of the membrane topology. After alignment of the images, cellular components were segmented to locate the individual organelles within the 3D reconstruction of the whole cell and also to create an inventory of organelles. Based on their morphologies we could identify specific cell types in the different hematopoietic organs. We could also quantify the proportion of each cell type in the whole population isolated from a given organ. Some of these specific cells from zebrafish were grown in a culture dish together with human cancer cells. By time-lapse light microscopy we observed that the fish cells attacked the cancer cells and killed them. From this we concluded that these cells must be similar to the cytotoxic cells from humans that play an important role in defence against spontaneously arising cancer cells in our bodies. They form special structures, called immunological synapses that we could also identify on our arrays and reconstruct in 3D. This is the first time the potential of zebrafish immune cells to form immunological synapses has been demonstrated. Our study is a good example for the practicality and benefit of array tomography in high-throughput ultrastructure imaging of substantial volumes, applicable to many areas of cell and developmental biology

    Location and arrangement of campaniform sensilla in Drosophila melanogaster

    Get PDF
    Sensory systems provide input to motor networks on the state of the body and environment. One such sensory system in insects is the campaniform sensilla (CS), which detect deformations of the exoskeleton arising from resisted movements or external perturbations. When physical strain is applied to the cuticle, CS external structures are compressed, leading to transduction in an internal sensory neuron. In Drosophila melanogaster, the distribution of CS on the exoskeleton has not been comprehensively described. To investigate CS number, location, spatial arrangement, and potential differences between individuals, we compared the front, middle, and hind legs of multiple flies using scanning electron microscopy. Additionally, we imaged the entire body surface to confirm known CS locations. On the legs, the number and relative arrangement of CS varied between individuals, and single CS of corresponding segments showed characteristic differences between legs. This knowledge is fundamental for studying the relevance of cuticular strain information within the complex neuromuscular networks controlling posture and movement. This comprehensive account of all D. melanogaster CS helps set the stage for experimental investigations into their responsivity, sensitivity, and roles in sensory acquisition and motor control in a light-weight model organism
    corecore