686 research outputs found
Stability of the Magnetic Monopole Condensate in three- and four-colour QCD
It is argued that the ground state of three- and four-colour QCD contains a
monopole condensate, necessary for the dual Meissner effect to be the mechanism
of confinement, and support its stability on the grounds that it gives the
off-diagonal gluons an effective mass sufficient to remove the unstable ground
state mode.Comment: jhep.cls, typos corrected, references added, some content delete
STATIC FOUR-DIMENSIONAL ABELIAN BLACK HOLES IN KALUZA-KLEIN THEORY
Static, four-dimensional (4-d) black holes (BH's) in ()-d Kaluza-Klein
(KK) theory with Abelian isometry and diagonal internal metric have at most one
electric () and one magnetic () charges, which can either come from the
same -gauge field (corresponding to BH's in effective 5-d KK theory) or
from different ones (corresponding to BH's with isometry
of an effective 6-d KK theory). In the latter case, explicit non-extreme
solutions have the global space-time of Schwarzschild BH's, finite temperature,
and non-zero entropy. In the extreme (supersymmetric) limit the singularity
becomes null, the temperature saturates the upper bound
, and entropy is zero. A class of KK BH's with
constrained charge configurations, exhibiting a continuous electric-magnetic
duality, are generated by global transformations on the above classes
of the solutions.Comment: 11 pages, 2 Postscript figures. uses RevTeX and psfig.sty (for figs)
paper and figs also at ftp://dept.physics.upenn.edu/pub/Cvetic/UPR-645-
Chromoelectric Knot in QCD
We argue that the Skyrme theory describes the chromomagnetic (not
chromoelectric) dynamics of QCD. This shows that the Skyrme theory could more
properly be interpreted as an effective theory which is dual to QCD, rather
than an effective theory of QCD itself. This leads us to predict the existence
of a new type of topological knot, a twisted chromoelectric flux ring, in QCD
which is dual to the chromomagnetic Faddeev-Niemi knot in Skyrme theory. We
estimate the mass and the decay width of the lightest chromoelectric knot to be
around and .Comment: 4 page
Knot Topology of QCD Vacuum
We show that one can express the knot equation of Skyrme theory completely in
terms of the vacuum potential of SU(2) QCD, in such a way that the equation is
viewed as a generalized Lorentz gauge condition which selects one vacuum for
each class of topologically equivalent vacua. From this we show that there are
three ways to describe the QCD vacuum (and thus the knot), by a non-linear
sigma field, a complex vector field, or by an Abelian gauge potential. This
tells that the QCD vacuum can be classified by an Abelian gauge potential with
an Abelian Chern-Simon index.Comment: 4 page
Teleparallel Equivalent of Non-Abelian Kaluza-Klein Theory
Based on the equivalence between a gauge theory for the translation group and
general relativity, a teleparallel version of the non-abelian Kaluza-Klein
theory is constructed. In this theory, only the fiber-space turns out to be
higher-dimensional, spacetime being kept always four-dimensional. The resulting
model is a gauge theory that unifies, in the Kaluza-Klein sense, gravitational
and gauge fields. In contrast to the ordinary Kaluza-Klein models, this theory
defines a natural length-scale for the compact sub-manifold of the fiber space,
which is shown to be of the order of the Planck length.Comment: Revtex4, 7 pages, no figures, to appear in Phys. Rev.
Thermodynamic and gravitational instability on hyperbolic spaces
We study the properties of anti--de Sitter black holes with a Gauss-Bonnet
term for various horizon topologies (k=0, \pm 1) and for various dimensions,
with emphasis on the less well understood k=-1 solution. We find that the zero
temperature (and zero energy density) extremal states are the local minima of
the energy for AdS black holes with hyperbolic event horizons. The hyperbolic
AdS black hole may be stable thermodynamically if the background is defined by
an extremal solution and the extremal entropy is non-negative. We also
investigate the gravitational stability of AdS spacetimes of dimensions D>4
against linear perturbations and find that the extremal states are still the
local minima of the energy. For a spherically symmetric AdS black hole
solution, the gravitational potential is positive and bounded, with or without
the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet
coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS
space), is found useful to keep the potential bounded from below, as required
for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps
figure
The Effective Energy-Momentum Tensor in Kaluza-Klein Gravity With Large Extra Dimensions and Off-Diagonal Metrics
We consider a version of Kaluza-Klein theory where the cylinder condition is
not imposed. The metric is allowed to have explicit dependence on the "extra"
coordinate(s). This is the usual scenario in brane-world and space-time-matter
theories. We extend the usual discussion by considering five-dimensional
metrics with off-diagonal terms. We replace the condition of cylindricity by
the requirement that physics in four-dimensional space-time should remain
invariant under changes of coordinates in the five-dimensional bulk. This
invariance does not eliminate physical effects from the extra dimension but
separates them from spurious geometrical ones. We use the appropriate splitting
technique to construct the most general induced energy-momentum tensor,
compatible with the required invariance. It generalizes all previous results in
the literature. In addition, we find two four-vectors, J_{m}^{mu} and
J_{e}^{mu}, induced by off-diagonal metrics, that separately satisfy the usual
equation of continuity in 4D. These vectors appear as source-terms in equations
that closely resemble the ones of electromagnetism. These are Maxwell-like
equations for an antisymmetric tensor {F-hat}_{mu nu} that generalizes the
usual electromagnetic one. This generalization is not an assumption, but
follows naturally from the dimensional reduction. Thus, if {F-hat}_{mu nu}
could be identified with the electromagnetic tensor, then the theory would
predict the existence of classical magnetic charge and current. The splitting
formalism used allows us to construct 4D physical quantities from
five-dimensional ones, in a way that is independent on how we choose our
space-time coordinates from those of the bulk.Comment: New title, editorial changes made as to match the version to appear
in International Journal of Modern Physics
Decomposition of meron configuration of SU(2) gauge field
For the meron configuration of the SU(2) gauge field in the four dimensional
Minkowskii spacetime, the decomposition into an isovector field \bn,
isoscalar fields and , and a U(1) gauge field is
attained by solving the consistency condition for \bn. The resulting \bn
turns out to possess two singular points, behave like a monopole-antimonopole
pair and reduce to the conventional hedgehog in a special case. The
field also possesses singular points, while and are regular
everywhere.Comment: 18 pages, 5 figures, Sec.4 rewritten. 5 refs. adde
Teleparallel Gravity and Dimensional Reductions of Noncommutative Gauge Theory
We study dimensional reductions of noncommutative electrodynamics on flat
space which lead to gauge theories of gravitation. For a general class of such
reductions, we show that the noncommutative gauge fields naturally yield a
Weitzenbock geometry on spacetime and that the induced diffeomorphism invariant
field theory can be made equivalent to a teleparallel formulation of gravity
which macroscopically describes general relativity. The Planck length is
determined in this setting by the Yang-Mills coupling constant and the
noncommutativity scale. The effective field theory can also contain
higher-curvature and non-local terms which are characteristic of string theory.
Some applications to D-brane dynamics and generalizations to include the
coupling of ordinary Yang-Mills theory to gravity are also described.Comment: 31 pages LaTeX; References adde
Illusions of general relativity in Brans-Dicke gravity
Contrary to common belief, the standard tenet of Brans-Dicke theory reducing
to general relativity when omega tends to infinity is false if the trace of the
matter energy-momentum tensor vanishes. The issue is clarified in a new
approach using conformal transformations. The otherwise unaccountable limiting
behavior of Brans-Dicke gravity is easily understood in terms of the conformal
invariance of the theory when the sources of gravity have radiation-like
properties. The rigorous computation of the asymptotic behavior of the
Brans-Dicke scalar field is straightforward in this new approach.Comment: 16 pages, LaTeX, to appear in Physical Review
- …
