639 research outputs found

    Tensor fasciae latae muscle in human embryos and foetuses with special reference to its contribution to the development of the iliotibial tract

    Get PDF
    Background: The human tensor fasciae latae muscle (TFL) is inserted into the iliotibial tract and plays a critical role in lateral stabilisation of the hip joint. We previously described a candidate of the initial iliotibial tract that originated from the gluteus maximus muscle and extended distally. Materials and methods: This study extended our observations by examining 30 human embryos and foetuses of gestational age (GA) 7–14 weeks (crown-to-rump length 24–108 mm). At GA 7 weeks, the TFL appeared as a small muscle mass floating in the subcutaneous tissue near the origins of the gluteus medius and rectus femoris muscles. Results: Subsequently, the TFL obtained an iliac origin adjacent to the rectus femoris tendon, but the distal end remained a tiny fibrous mass on the vastus lateralis muscle. Until GA 10 weeks, the TFL muscle fibres were inserted into a vastus lateralis fascia that joined the quadriceps tendon distally. The next stage consisted of the TFL muscle belly “connecting” the vastus fascia and the gluteus fascia, including our previous candidate of the initial iliotibial tract. Until GA 14 weeks, the TFL was sandwiched by two laminae of the connecting fascia. Conclusions: These findings suggested that, when the vastus lateralis fascia separated from the quadriceps tendon to attach to the tibia, possibly after birth, the resulting iliotibial tract would consist of a continuous longitudinal band from the gluteus maximus fascia, via the vastus fascia, to the tibia. Although it is a small muscle, the foetal TFL plays a critical role in the development of the iliotibial tract

    2014 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2014

    Get PDF
    no abstrac

    Modeling of Ultra Low Capacitance Transient Voltage Suppression Diode for High ESD Protection

    Get PDF
    To improve key properties such as ultra-low capacitance (ULC) and high-voltage (HV) breakdown, we have performed a simulation work about transient voltage suppression (TVS) diodes. ULC-TVS diode was designed to employ a double deep trench to cut off the various parasitic effects that may degrade the device performance. The electrostatic discharge (ESD) protection is the targeting for the best applications in high-frequency and high-speed ICs. In this work, the device could present excellent performance in terms of very responsive ESD properties, high breakdown voltage, low leakage current, and very low capacitance level. The double trenches are aligned to the top electrode contact to restrict field crowding effects by the strong electric field intensity. The performance would be sufficient for the robust ESD nature up to IEC61000-4-2 (30 kV) and compatible with strong surge protection IEC61000-4-5 (10A). Their electrical properties have been evaluated for structure from simulation and the results are obtained at the device parameters. Several process of device design related effects on the electrical capability and can be optimized. Keywords: ULC-TVS diode, simulation (TCAD), characteristics, capacitance, ESD protection

    Sediment transport calculation considering cohesive effects and its application to wave-induced topographic change

    Get PDF
    A sediment transport calculation considering cohesive force is proposed to deal with the transport phenomena of cohesive sediment. In the proposed calculation, each sand particle is assumed to be surrounded by a thin layer of clay. The critical Shields parameter and bed-load sediment transport rate are modified to include the cohesive force acting on the sand particle. The proposed calculation is incorporated into a two-way coupled fluid-structure-sediment interaction model, and applied to wave-induced topographic change of an artificial shallow. Numerical results show that an increase in the content ratio of the clay, cohesive resistance force per unit surface area and water content cause increases in the critical Shields parameter and decreases in the bed-load sediment transport rate, reducing the topographic change of a shallow without changing its trend. This suggests that mixing clay in the pores of the sand particles can reduce the topographic change of shallows

    The complete chloroplast genome of pearl millet (Pennisetum glaucum (L.) R. Br.) and comparative analysis within the family poaceae

    Get PDF
    The complete chloroplast (cp) genome sequence of Pearl millet (Pennisetum glaucum [L.] R. Br.), an important grain and forage crop in the family Poaceae, is reported in this study. The complete cp genome sequence of P. glaucum is 138,172 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeat (IR) regions (22,275 bp) separated by a small single-copy (SSC) region (12,409 bp) and a large single-copy (LSC) region (81,213). The P. glaucum cp genome encodes 110 unique genes, 76 of which are protein-coding genes, 4 ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes and 18 duplicated genes in the IR region. Nine genes contain one or two introns. Whole genome alignments of cp genome were performed for genome-wide comparison. Locally collinear blocks (LCBs) identified among the cp genomes showed that they were well conserved with respect to gene organization and order. This newly determined cp genome sequence of P. glaucum will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae

    Polaronic Signatures in Mid-Infrared Spectra: Prediction for LaMnO3 and CaMnO3

    Full text link
    Hole-doped LaMnO3 and electron-doped CaMnO3 form self-trapped electronic states. The spectra of these states have been calculated using a two orbital (Mn eg Jahn-Teller) model, from which the non-adiabatic optical conductivity spectra are obtained. In both cases the optical spectrum contains weight in the gap region, whose observation will indicate the self-trapped nature of the carrier states. The predicted spectra are proportional to the concentration of the doped carriers in the dilute regime, with coefficients calculated with no further model parameters.Comment: 6 pages with 3 figures imbedde

    Cluster Spin Glass Distribution Functions in La2−x_{2-x}Srx_xCuO4_4

    Full text link
    Signatures of the cluster spin glass have been found in a variety of experiments, with an effective onset temperature TonT_{on} that is frequency dependent. We reanalyze the experimental results and find that they are characterized by a distribution of activation energies, with a nonzero glass transition temperature Tg(x)<TonT_g(x)<T_{on}. While the distribution of activation energies is the same, the distribution of weights depends on the process. Remarkably, the weights are essentially doping independent.Comment: 5 pages, 5 ps figure

    Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23

    Full text link
    We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H-alpha observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H-alpha observations revealed two successive ejections (of speeds ~350 and ~100 km/s), originating from the same filament channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s, respectively). These two ejections generated propagating fast shock waves (i.e., fast drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun-Earth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic

    Streamer Wave Events Observed in Solar Cycle 23

    Full text link
    In this paper we conduct a data survey searching for well-defined streamer wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO) on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle 23. As a result, 8 candidate events are found and presented here. We compare different events and find that in most of them the driving CMEs ejecta are characterized by a high speed and a wide angular span, and the CME-streamer interactions occur generally along the flank of the streamer structure at an altitude no higher than the bottom of the field of view of LASCO C2. In addition, all front-side CMEs have accompanying flares. These common observational features shed light on the excitation conditions of streamer wave events. We also conduct a further analysis on one specific streamer wave event on 5 June 2003. The heliocentric distances of 4 wave troughs/crests at various exposure times are determined; they are then used to deduce the wave properties like period, wavelength, and phase speeds. It is found that both the period and wavelength increase gradually with the wave propagation along the streamer plasma sheet, and the phase speed of the preceding wave is generally faster than that of the trailing ones. The associated coronal seismological study yields the radial profiles of the Alfv\'en speed and magnetic field strength in the region surrounding the streamer plasma sheet. Both quantities show a general declining trend with time. This is interpreted as an observational manifestation of the recovering process of the CME-disturbed corona. It is also found that the Alfv\'enic critical point is at about 10 R⊙_\odot where the flow speed, which equals the Alfv\'en speed, is ∌\sim 200 km s−1^{-1}

    Current reversal with type-I intermittency in deterministic inertia ratchets

    Full text link
    The intermittency is investigated when the current reversal occurs in a deterministic inertia ratchet system. To determine which type the intermittency belongs to, we obtain the return map of velocities of particle using stroboscopic recording, and numerically calculate the distribution of average laminar length {}. The distribution follows the scaling law of ∝ϔ−1/2{} \propto {\epsilon}^{-1/2}, the characteristic relation of type-I intermittency.Comment: 4 pages, 7 figure
    • 

    corecore