870 research outputs found
Orientations of two coupled molecules
Orientation states of two coupled polar molecules controlled by laser pulses
are studied theoretically. By varying the period of a series of periodically
applied laser pulse, transition from regular to chaotic behavior may occur.
Schmidt decomposition is used to measure the degree of entanglement. It is
found that the entanglement can be enhanced by increasing the strength of laser
pulse.Comment: 4 pages, 4 figures, to appear in Chem. Phys. Lett.(2004
Transport of Surface States in the Bulk Quantum Hall Effect
The two-dimensional surface of a coupled multilayer integer quantum Hall
system consists of an anisotropic chiral metal. This unusual metal is
characterized by ballistic motion transverse and diffusive motion parallel
(\hat{z}) to the magnetic field. Employing a network model, we calculate
numerically the phase coherent two-terminal z-axis conductance and its
mesoscopic fluctuations. Quasi-1d localization effects are evident in the limit
of many layers. We consider the role of inelastic de-phasing effects in
modifying the transport of the chiral surface sheath, discussing their
importance in the recent experiments of Druist et al.Comment: 9 pages LaTex, 9 postscript figures included using eps
Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states
When the two-dimensional random-bond Ising model is represented as a
noninteracting fermion problem, it has the same symmetries as an ensemble of
random matrices known as class D. A nonlinear sigma model analysis of the
latter in two dimensions has previously led to the prediction of a metallic
phase, in which the fermion eigenstates at zero energy are extended. In this
paper we argue that such behavior cannot occur in the random-bond Ising model,
by showing that the Ising spin correlations in the metallic phase violate the
bound on such correlations that results from the reality of the Ising
couplings. Some types of disorder in spinless or spin-polarized p-wave
superconductors and paired fractional quantum Hall states allow a mapping onto
an Ising model with real but correlated bonds, and hence a metallic phase is
not possible there either. It is further argued that vortex disorder, which is
generic in the fractional quantum Hall applications, destroys the ordered or
weak-pairing phase, in which nonabelian statistics is obtained in the pure
case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe
Generating droplets in two-dimensional Ising spin glasses by using matching algorithms
We study the behavior of droplets for two dimensional Ising spin glasses with
Gaussian interactions. We use an exact matching algorithm which enables study
of systems with linear dimension L up to 240, which is larger than is possible
with other approaches. But the method only allows certain classes of droplets
to be generated. We study single-bond, cross and a category of fixed volume
droplets as well as first excitations. By comparison with similar or equivalent
droplets generated in previous works, the advantages but also the limitations
of this approach are revealed. In particular we have studied the scaling
behavior of the droplet energies and droplet sizes. In most cases, a crossover
of the data can be observed such that for large sizes the behavior is
compatible with the one-exponent scenario of the droplet theory. Only for the
case of first excitations, no clear conclusion can be reached, probably because
even with the matching approach the accessible system sizes are still too
small.Comment: 11 pages, 16 figures, revte
Feynman's Propagator Applied to Network Models of Localization
Network models of dirty electronic systems are mapped onto an interacting
field theory of lower dimensionality by intepreting one space dimension as
time. This is accomplished via Feynman's interpretation of anti-particles as
particles moving backwards in time. The method developed maps calculation of
the moments of the Landauer conductance onto calculation of correlation
functions of an interacting field theory of bosons and fermions. The resulting
field theories are supersymmetric and closely related to the supersymmetric
spin-chain representations of network models recently discussed by various
authors. As an application of the method, the two-edge Chalker-Coddington model
is shown to be Anderson localized, and a delocalization transition in a related
two-edge network model (recently discussed by Balents and Fisher) is studied by
calculation of the average Landauer conductance.Comment: Latex, 14 pages, 2 fig
Fokker-Planck equations and density of states in disordered quantum wires
We propose a general scheme to construct scaling equations for the density of
states in disordered quantum wires for all ten pure Cartan symmetry classes.
The anomalous behavior of the density of states near the Fermi level for the
three chiral and four Bogoliubov-de Gennes universality classes is analysed in
detail by means of a mapping to a scaling equation for the reflection from a
quantum wire in the presence of an imaginary potential.Comment: 10 pages, 5 figures, revised versio
Second Order Power Corrections in the Heavy Quark Effective Theory I. Formalism and Meson Form Factors
In the heavy quark effective theory, hadronic matrix elements of currents
between two hadrons containing a heavy quark are expanded in inverse powers of
the heavy quark masses, with coefficients that are functions of the kinematic
variable . For the ground state pseudoscalar and vector mesons, this
expansion is constructed at order . A minimal set of universal form
factors is defined in terms of matrix elements of higher dimension operators in
the effective theory. The zero recoil normalization conditions following from
vector current conservation are derived. Several phenomenological applications
of the general results are discussed in detail. It is argued that at zero
recoil the semileptonic decay rates for and receive only small second order corrections, which are unlikely
to exceed the level of a few percent. This supports the usefulness of the heavy
quark expansion for a reliable determination of .Comment: (34 pages, REVTEX, two postscript figures available upon request),
SLAC-PUB-589
Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach
We present an approach to solid-state electronic-structure calculations based
on the finite-element method. In this method, the basis functions are strictly
local, piecewise polynomials. Because the basis is composed of polynomials, the
method is completely general and its convergence can be controlled
systematically. Because the basis functions are strictly local in real space,
the method allows for variable resolution in real space; produces sparse,
structured matrices, enabling the effective use of iterative solution methods;
and is well suited to parallel implementation. The method thus combines the
significant advantages of both real-space-grid and basis-oriented approaches
and so promises to be particularly well suited for large, accurate ab initio
calculations. We develop the theory of our approach in detail, discuss
advantages and disadvantages, and report initial results, including the first
fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Lepton polarization correlations in
In this work we will study the polarizations of both leptons () in the
decay channel . In the case of the dileptonic inclusive
decay , where apart from the polarization asymmetries
of single lepton , one can also observe the polarization asymmetries of
both leptons simultaneously. If this sort of measurement is possible then we
can have, apart from decay rate, FB asymmetry and the six single lepton
polarization asymmetries (three each for and ), nine more
double polarization asymmetries. This will give us a very useful tool in more
strict testing of SM and the physics beyond. We discuss the double polarization
asymmetries of leptons in the decay mode within
the SM and the Minimal Supersymmetric extensions of it.Comment: 21 pages, 21 figures; version to match paper to appear in PR
- …
