13 research outputs found

    Endoscopic Submucosal Dissection for Gastric Epithelial Tumors: A Multicenter Study in Taiwan

    Get PDF
    Background/PurposeEndoscopic submucosal dissection (ESD) is an advanced endoscopic procedure to resect early gastric cancer (EGC). The purpose of this study was to determine the effectiveness and complications of ESD for gastric epithelial tumors in Taiwan.MethodsWe retrospectively analyzed the efficacy and outcome of ESD in patients who received ESD for gastric epithelial tumors between June 2004 and August 2007.ResultsA total of 70 patients with gastric epithelial tumors were treated by ESD. The mean age was 66.5 ±12.9 years (range, 35–84 years). The mean size of the gastric epithelial tumors was 1.85 ± 0.81 cm. The mean size of resected specimens was 3.26 ± 1.39 cm. The one-piece resection rate was 91.4% (64/70). The median operation time was 92.4 minutes. The complicating bleeding and perforation rates were 5.7% (4/70) and 4.3% (3/70), respectively. Emergency surgery was performed for three patients with perforations. The local recurrence rate of gastric cancer was 2.8%. Except for one patient who died of congestive heart failure and another who died of stroke, the remaining 68 patients (97.1%) survived.ConclusionESD is a promising local curative treatment option for EGC in Taiwan but it still carries risks of perforation and bleeding. The education and learning curve of endoscopists will improve the outcome of this procedure

    Impact of Ancestral Differences and Reassessment of the Classification of Previously Reported Pathogenic Variants in Patients With Brugada Syndrome in the Genomic Era: A SADS-TW BrS Registry

    Get PDF
    Brugada syndrome (BrS) is a heritable disease that results in sudden cardiac death. In the exome/genomic era, certain reported pathogenic variants in some genetic diseases have been reclassified as benign owing to their high frequency in some ancestries. In the present study, we comprehensively reassessed all previously reported pathogenic variants of BrS. We collected all pathogenic variants of BrS reported in the Human Gene Mutation Database and ClinVar throughout April 2017. We compared the minor allele frequency (MAF) of each variant among different ancestries by searching public whole-genome and exome databases. After considering the maximum credible allele frequency, variants with a MAF ≄ 0.001 were considered to be of questionable pathogenicity. We also investigated the percentage of SCN5A variants with a MAF ≄ 0.001 in 124 BrS patients from the Han Chinese population. We collected a total of 440 BrS variants, of which 18 had a MAF ≄ 0.001. There was a greater percentage of non-SCN5A variants with a MAF ≄ 0.001 than of SCN5A variants (21.8 versus 1.6%, p < 0.0001). There were fewer frameshift and nonsense mutations than missense mutations (0.9 versus 5.6%, p = 0.032). Of the 18 variants, 14 (77.8%) were present only in the reference Asian population. In our cohort, we identified two SCN5A variants (p.A226V and p.V1340I) with MAFs ≄ 0.001 (0.45%). In conclusion, ancestral differences are important when considering the pathogenicity of BrS variants, especially in the case of missense variants and non-SCN5A variants, which may be pathogenic in some ancestries but only disease-predisposing in others

    Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis

    No full text
    In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology

    Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis

    No full text
    The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including CA2, CYP2E1, HSD17B, SSTR3, SULT1E1, TUBB3, UCN, and UGT2B7 was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway

    Involvement of a BH3-only apoptosis sensitizer gene Blm-s in hippocampus-mediated mood control

    No full text
    Mood disorders are an important public health issue and recent advances in genomic studies have indicated that molecules involved in neurodevelopment are causally related to mood disorders. BLM-s (BCL-2-like molecule, small transcript isoform), a BH3-only proapoptotic BCL-2 family member, mediates apoptosis of postmitotic immature neurons during embryonic cortical development, but its role in the adult brain is unknown. To better understand the physiological role of Blm-s gene in vivo, we generated a Blm-s-knockout (Blm-s-/-) mouse. The Blm-s-/- mice breed normally and exhibit grossly normal development. However, global depletion of Blm-s is highly associated with depression- and anxiety-related behaviors in adult mutant mice with intact learning and memory capacity. Functional magnetic resonance imaging of adult Blm-s-/- mice reveals reduced connectivity mainly in the ventral dentate gyrus (vDG) of the hippocampus with no alteration in the dorsal DG connectivity and in total hippocampal volume. At the cellular level, BLM-s is expressed in DG granule cells (GCs), and Blm-s-/- mice show reduced dendritic complexity and decreased spine density in mature GCs. Electrophysiology study uncovers that mature vGCs in adult Blm-s-/- DG are intrinsically more excitable. Interestingly, certain genetic variants of the human Blm homologue gene (VPS50) are significantly associated with depression traits from publicly resourced UK Biobank data. Taken together, BLM-s is required for the hippocampal mood control function. Loss of BLM-s causes abnormality in the electrophysiology and morphology of GCs and a disrupted vDG neural network, which could underlie Blm-s-null-associated anxiety and depression
    corecore