3,275 research outputs found

    Comparative Law: Alcohol, Drug Abuse & Jurisprudence from the United States to Korea

    Full text link
    Human beings have struggled against alcohol and drug addiction since the beginning of history. All kinds of possible ways have been used to treat addicts effectively, such as segregation, whipping, sterilization, or execution. Like the ancient methods used to treat the disabled, these methods used to treat alcoholic and drug addicts stemmed mainly from ignorance and prejudice. Through trial and error, a fresh approach of treating alcoholism and drug addiction as a disease has emerged. This new perspective has created drug courts and a movement called Alcoholics Anonymous that have shown successful results, in helping create greater protection under the ADA. Therefore, these programs are indeed enough inspiration to other nations like Korea, which has labored long with outdated methods like discrimination and strong punishment

    Two-gap and paramagnetic pair-breaking effects on upper critical field of SmFeAsO0.85_{0.85} and SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals

    Full text link
    We investigated the temperature dependence of the upper critical field [Hc2(T)H_{c2}(T)] of fluorine-free SmFeAsO0.85_{0.85} and fluorine-doped SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals by measuring the resistive transition in low static magnetic fields and in pulsed fields up to 60 T. Both crystals show that Hc2(T)H_{c2}(T)'s along the c axis [Hc2c(T)H_{c2}^c(T)] and in an abab-planar direction [Hc2ab(T)H_{c2}^{ab}(T)] exhibit a linear and a sublinear increase, respectively, with decreasing temperature below the superconducting transition. Hc2(T)H_{c2}(T)'s in both directions deviate from the conventional one-gap Werthamer-Helfand-Hohenberg theoretical prediction at low temperatures. A two-gap nature and the paramagnetic pair-breaking effect are shown to be responsible for the temperature-dependent behavior of Hc2cH_{c2}^c and Hc2abH_{c2}^{ab}, respectively.Comment: 21 pages, 8 figure

    Lipid Transfer Inhibitor Protein (Apolipoprotein F) Concentration in Normolipidemic and Hyperlipidemic Subjects

    Get PDF
    Lipid transfer inhibitor protein (LTIP) is an important regulator of cholesteryl ester transfer protein function. We report the development of an immunoassay for LTIP and its use to quantify LTIP in plasma of varying lipid contents. A rabbit antibody against bacterially produced recombinant LTIP detected two LTIP isoforms in plasma differing in carbohydrate content. This antibody was used in a competitive, enzyme-linked immunoassay that uses partially purified LTIP bound to microtiter plates. To optimize LTIP immunoreactivity, plasma samples required preincubation in 1% Tween-20 and 0.5% Nonidet P-40. In normolipidemic plasma, LTIP averaged 83.5 mg/ml. LTIP was 31% higher in males than in females. LTIP was positively associated with HDL cholesterol in normolipidemic males but not in females. In hypertriglyceridemic males, LTIP was only 56% of control values, whereas in hypertriglyceridemic females, LTIP tended to increase. Additionally, in males with normal cholesterol and triglyceride (TG) ≤ 200 mg/dl, LTIP varied inversely with plasma TG. Overall, we have confirmed the negative association between plasma TG levels and LTIP previously suggested by a small data set, but now we demonstrate that this effect is seen only in males. The mechanisms underlying this gender-specific response to TG, and why LTIP and HDL levels correlate in males but not in females, remain to be determined

    Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    Get PDF
    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins

    Three-dimensional oscillations of twenty one halo coronal mass ejections by multi-spacecraft

    Get PDF
    We investigate the 3D structure of kinematic oscillations of full halo coronal mass ejections (FHCMEs) using multi-spacecraft coronagraph data from two non-parallel lines of sight. For this, we consider 21 FHCMEs which are simultaneously observed by the Solar and Heliospheric Observatory and the Solar TErrestrial RElations Observatory A or B, from 2010 June to 2012 August when the spacecraft were roughly in quadrature. Using sequences of running difference images, we estimate the instantaneous projected speeds of the FHCMEs at 24 different azimuthal angles in the planes of the sky of those coronagraphs. We find that all these FHCMEs have experienced kinematic oscillations characterized by quasi-periodic variations of the instantaneous projected radial velocity with periods ranging from 24 to 48 min. The oscillations detected in the analyzed events are found to show distinct azimuthal wave modes. Thirteen events (about 62%) are found to oscillate with the azimuthal wave number m = 1. The oscillating directions of the nodes of the m = 1 mode for these FHCMEs are consistent with those of their position angles (or the direction of eruption), with a mean difference of about 23°. The oscillation amplitude is found to correlate well with the projected radial speed of the CME. An estimation of Lorentz accelerations shows that they are dominant over other forces, implying that the magnetic force is responsible for the kinematic oscillations of CMEs. However, we cannot rule out other possibilities: a global layer of enhanced current around the CMEs or the nonlinear nature of its driver, for example the effect of vortex shedding

    Regulation of tissue-dependent differences in CD8+ T cell apoptosis during viral infection

    Get PDF
    Virus-specific CD8+ T cells in the lymphoid organs contract at the resolution of virus infections by apoptosis or by dissemination into peripheral tissues, and those residing in nonlymphoid organs, including the peritoneal cavity and fat pads, are more resistant to apoptosis than those in the spleen and lymph nodes. This stability of memory T cells in the nonlymphoid tissues may enhance protection to secondary challenges. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8+ T cells in nonlymphoid tissues were enriched for memory precursors (expressing high levels of interleukin-7 receptor and low levels of killer cell lectin-like receptor G1 [IL-7Rhi KLRG1lo]) and had higher expression of CD27, CXCR3, and T cell factor-1 (TCF-1), each a marker that is individually correlated with decreased apoptosis. CD8+ T cells in the peritoneal cavity of TCF-1-deficient mice had decreased survival, suggesting a role for TCF-1 in promoting survival in the nonlymphoid tissues. CXCR3+ CD8+ T cells resisted apoptosis and accumulated in the lymph nodes of mice treated with FTY720, which blocks the export of lymph node cells into peripheral tissue. The peritoneal exudate cells (PEC) expressed increased amounts of CXCR3 ligands, CXCL9 and CXCL10, which may normally recruit these nonapoptotic cells from the lymph nodes. In addition, adoptive transfer of splenic CD8+ T cells into PEC or spleen environments showed that the peritoneal environment promoted survival of CD8+ T cells. Thus, intrinsic stability of T cells which are present in the nonlymphoid tissues along with preferential migration of apoptosis-resistant CD8+ T cells into peripheral sites and the availability of tissue-specific factors that enhance memory cell survival may collectively account for the tissue-dependent apoptotic differences. IMPORTANCE: Most infections are initiated at nonlymphoid tissue sites, and the presence of memory T cells in nonlymphoid tissues is critical for protective immunity in various viral infection models. Virus-specific CD8+ T cells in the nonlymphoid tissues are more resistant to apoptosis than those in lymphoid organs during the resolution and memory phase of the immune response to acute LCMV infection. Here, we investigated the mechanisms promoting stability of T cells in the nonlymphoid tissues. This increased resistance to apoptosis of virus-specific CD8+ T cells in nonlymphoid tissues was due to several factors. Nonlymphoid tissues were enriched in memory phenotype CD8+ T cells, which were intrinsically resistant to apoptosis irrespective of the tissue environment. Furthermore, apoptosis-resistant CD8+ T cells preferentially migrated into the nonlymphoid tissues, where the availability of tissue-specific factors may enhance memory cell survival. Our findings are relevant for the generation of long-lasting vaccines providing protection at peripheral infection sites

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM
    corecore