9 research outputs found

    Polyomavirus en hospederos inmunocomprometidos: situación en Sudamérica

    No full text

    Genetic Variability of Human Metapneumovirus Isolated From Chilean Children, 2003-2004

    No full text
    Human metapneumovirus (hMPV) is a significant cause of acute lower respiratory tract infection in all age groups, particularly in children. Two genetic groups and four subgroups of hMPV have been described. They co-circulate during an epidemic in variable proportions. The aims were to characterize the genotypes of hMPV recovered from children hospitalized for acute lower respiratory tract infection and to establish the molecular epidemiology of strains circulating in Santiago of Chile during a 2-year period. The detection of the N gene by reverse-transcription polymerase chain reaction was carried out for screening 545 infants hospitalized for acute lower respiratory tract infection in Santiago during 2003-2004. The genetic typing of hMPV was performed by analyzing the fusion gene sequences. hMPV was detected in 10.2% (56/545 cases). Phylogenetic analysis of F gene sequences from 39 Chilean hMPV strains identified the two groups and four subgroups previously described. Strains clustered into group A were split further into the sub lineages A1, A2, and A3. Most Chilean strains clustered into the proposed novel A3 sub lineage (59%). A3 viruses were present in both years, while A1 and A2 circulated just in I year. In conclusion, hMPV is a relevant cause of acute lower respiratory infection in Chilean children and the potential novel cluster of group A emphasize the need for further regional genetic variability studies. J. Med. Virol. 81:340-344, 2009. (c) 2008 Wiley-Liss, Inc

    No clinical predictors of intraepithelial neoplasia in HIV-positive patients with external condilomata acuminata

    No full text
    To identify clinical parameters in association with human papilloma virus (HPV) genotypes and histopathology diagnosis in HIV-positive patients with external condylomata acuminata (ECA), 400 Chilean HIV-positive patients were included in the study. Forty-seven patients presented ECA. Clinical parameters and socio demographic data were recorded. Histopathology study and HPV linear array genotyping assay were performed. Intraepithelial neoplasia (IEN) grade 2 or 3 was found in 8.5% of patients, associated to HPV-16. Patients were mainly single, MSM, with history of sexually transmitted disease (STD), multiple sexual partners, receiving antiretroviral therapy and with recurrent lesions. All ECA were mainly perianal, grey or pink colored, exophytic with less than two years evolution. No clinical parameter could predict the development of high grade IEN in HIV patients with ECA. It seems necessary to perform biopsy and genotype all HIV positive patients with ECA

    The [Mo6Cl14]2− Cluster is Biologically Secure and Has Anti-Rotavirus Activity In Vitro

    No full text
    The molybdenum cluster [Mo6Cl14]2− is a fluorescent component with potential for use in cell labelling and pharmacology. Biological safety and antiviral properties of the cluster are as yet unknown. Here, we show the effect of acute exposition of human cells and red blood cells to the molybdenum cluster and its interaction with proteins and antiviral activity in vitro. We measured cell viability of HepG2 and EA.hy926 cell lines exposed to increasing concentrations of the cluster (0.1 to 250 µM), by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Hemolysis and morphological alterations of red blood cells, obtained from healthy donors, exposed to the cluster (10 to 200 µM) at 37 °C were analyzed. Furthermore, quenching of tryptophan residues of albumin was performed. Finally, plaque formation by rotavirus SA11 in MA104 cells treated with the cluster (100 to 300 µM) were analyzed. We found that all doses of the cluster showed similar cell viability, hemolysis, and morphology values, compared to control. Quenching of tryptophan residues of albumin suggests a protein-cluster complex formation. Finally, the cluster showed antiviral activity at 300 µM. These results indicate that the cluster [Mo6Cl14]2− could be intravenously administered in animals at therapeutic doses for further in vivo studies and might be studied as an antiviral agent

    The cancer-related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis

    No full text
    © 2019 Wiley Periodicals, Inc. Osteosarcomas are bone tumors that frequently metastasize to the lung. Aberrant expression of the transcription factor, runt-related transcription factor 2 (RUNX2), is a key pathological feature in osteosarcoma and associated with loss of p53 and miR-34 expression. Elevated RUNX2 may transcriptionally activate genes mediating tumor progression and metastasis, including the RUNX2 target gene osteopontin (OPN/SPP1). This gene encodes a secreted matricellular protein produced by osteoblasts to regulate bone matrix remodeling and tissue calcification. Here we investigated whether and how the RUNX2/OPN axis regulates lung metastasis of osteosarcoma. Importantly, RUNX2 depletion attenuates lung metastasis of osteosarcoma cells in vivo. Using next-generation RNA-sequencing, protein-based assays, as well as the loss- and gain-of-function approaches in selected osteosarcoma cell lines, we show that osteopontin messenger RNA levels closely correlate with RUNX2 exp
    corecore