13 research outputs found

    Evolution of collective and noncollective structures in Xe-123

    Get PDF
    An experiment involving a heavy-ion-induced fusion-evaporation reaction was carried out where high-spin states of 123Xe were populated in the 80Se (48Ca,5n) 123Xe reaction at 207 MeV beam energy. Gamma-ray coincidence events were recorded with the Gammasphere Ge detector array. The previously known level scheme was confirmed and enhanced with the addition of five new band structures and several interband transitions. Cranked Nilsson-Strutinsky (CNS) calculations were performed and compared with the experimental results in order to assign configurations to the bands.Additional co-authors: T Lauritsen, S Zhu, A Korichi, P Fallon, B M Nyakó, and J Timá

    Highly deformed band structures due to core excitations in 123Xe

    Get PDF
    High-spin states in 123 Xe were populated in the 80 Se(48 Ca, 5n) 123 Xe reaction at a beam energy of 207 MeV. Gamma-ray coincidence events were recorded with the Gammasphere spectrometer. Four new high-spin bands have been discovered in this nucleus.The bands are compared with those calculated within the framework of cranked Nilsson-Strutinsky and cranked Nilsson-Strutinsky-Bogoliubov models. It is concluded that the configurations of the bands involve two-proton excita-tions across the Z = 50 as well as excitation of neutrons across the N = 82 shell gaps resulting in a large deformation, ε2 ∼ 0.30 and γ ∼ 5 • .Additional co-authors: F. G. Kondev, T. Lauritsen, S. Zhu, A. Korichi, P. Fallon, B. M. Nyakó, and J. Timá

    Localization and tracking of radioactive source carriers in person streams

    No full text
    The localization and tracking of radioactive sources in public facilities like airports or stations is a problem of highest security relevance. The accumulation and the severity of terrorist attacks during the past decade give reason to the assumption that future attacks could also involve radioactive material packaged with conventional explosives. The only way to avoid such kind of attacks is to localize and arrest the person carrying the material to its destination. But since radiation is not perceivable by human beings, the security guards are largely dependent on technical decision support to perform this task. We consider a security assistance system comprising three gamma scintillation detectors that are distributed along a corridor wall to check passing people for radioactive material. Furthermore, the system consists of a set of tracking sensors simultaneously providing the positions of all persons during their walk through the corridor. In this paper we propose techniques to estimate the assignment of radioactive detections to person tracks. These techniques provide a measure for each person that reflects the probability that the person is a radioactive source carrier. The problem of source localization is thus reduced to a matching problem between person tracks and sequences of count rates

    Definition and test of the electromagnetic immunity of UAS for first responders

    No full text
    Recent technological developments considerably lowered the barrier for unmanned aerial systems (UAS) to be employed in a variety of usage scenarios, comprising live video transmission from otherwise inaccessible vantage points. As an example, in the French-German ANCHORS project several UAS guided by swarm intelligence provide aerial views and environmental data of a disaster site while deploying an ad-hoc communication network for first responders. Since being able to operate in harsh environmental conditions is a key feature, the immunity of the UAS against radio frequency (RF) exposure has been studied. Conventional Electromagnetic Compatibility (EMC) applied to commercial and industrial electronics is not sufficient since UAS are airborne and can as such move beyond the bounds within which RF exposure is usually limited by regulatory measures. Therefore, the EMC requirements have been complemented by a set of specific RF test frequencies and parameters where strong sources are expected to interfere in the example project test case of an inland port environment. While no essential malfunctions could be observed up to field strengths of 30 V m−1, a sophisticated, more exhaustive approach for testing against potential sources of interference in key scenarios of UAS usage should be derived from our present findings.Recent technological developments considerably lowered the barrier for unmanned aerial systems (UAS) to be employed in a variety of usage scenarios, comprising live video transmission from otherwise inaccessible vantage points. As an example, in the French-German ANCHORS project several UAS guided by swarm intelligence provide aerial views and environmental data of a disaster site while deploying an ad-hoc communication network for first responders. Since being able to operate in harsh environmental conditions is a key feature, the immunity of the UAS against radio frequency (RF) exposure has been studied. Conventional Electromagnetic Compatibility (EMC) applied to commercial and industrial electronics is not sufficient since UAS are airborne and can as such move beyond the bounds within which RF exposure is usually limited by regulatory measures. Therefore, the EMC requirements have been complemented by a set of specific RF test frequencies and parameters where strong sources are expected to interfere in the example project test case of an inland port environment. While no essential malfunctions could be observed up to field strengths of 30 V m−1, a sophisticated, more exhaustive approach for testing against potential sources of interference in key scenarios of UAS usage should be derived from our present findings

    DeGeN - Measurement vehicle for radioactive and nuclear material: Poster presented at 4th European IRPA Congress 2014, June 23rd to June 27th 2014, Geneva, Switzerland

    No full text
    The measurement system DeGeN comprises gamma and neutron detectors with high sensitivity suitable for detecting radioactive and nuclear (RN) material. Because of the high sensitivity, even minor changes of the natural background radiation can be registered which is tremendously important for the discrimination between the presence of actual RN material and mere modifications of the natural background. Knowledge about such a discrimination is absolutely necessary in order to be able to evaluate the measurement results correctly. Questionable results which could lead to wrong response measures are more likely to be prevented then

    CLYC scintillators: a possible enhancement for handheld OSI detectors

    No full text
    Many detection systems detect either gamma or neutron radiation or combine the detection of both nuclear radiation types byintegrating two detectors in one system. For hand-held systems a very small 3He-tube is often combined with a scintillation crystal of e.g. NaI or LaBr3. The recently developed detector material CLYC promises to detect gammas and neutrons simultaneously with good resolution and efficiency for fast and reliable isotope identification and efficient neutron counting. In the paper we report on tests with a CLYC detector. The scintillation material of CLYC-detectors (Cs2LiYCl6:Ce) contains enriched 6Li. Via the nuclear reaction 6Li(n,α)t alpha particles and high energetic tritons are generated by neutron radiation. The ions generate a light pulse while travelling through the crystal. Gamma radiation excites electrons in the scintillator. Neutron and gamma radiation have a unique pulse shape, enabling the distinct discrimination of induced pulses. New detector materials like CLYC, which are able to detect gammas and neutrons simultaneously, may lead to a new type of small and efficient hand-held devices. These detectors have the potential to improve the detection of nuclear and radioactive material and may be used successfully in OSI

    Qualification Test System for Radiation Detection Devices QuTeSt

    No full text
    Measurement equipment for the detection and identification of radioactive and nuclear (RN) material has a wide application area. The main application aspects are monitoring, search, and identification. A common goal is to gain reliable measurement results. In the past, the only way to assess the performance of a measuring device was to rely on the data given by the manufacturer of the device itself. Reliable test results from an independent third party are more than welcome. These tests can be performed against consensus standards in order to have reproducible test results, independent of the testing location and the performing laboratory. Fraunhofer INT has conceived and built a test environment to perform dynamic and static test measurements using neutron and gamma sources. Tests can be performed in accordance with the IEC and ANSI standards as well as the ITRAP+10 test procedures. This includes qualification tests of truck portal monitors with the dynamic test system. Generally, the effects of one test parameter on other test parameters are not considered in the test procedures. For example, the accuracy of the dose rate may depend on the energy range of the radioactive source used. Besides the overview of the test systems the paper will address restrictions, problems and limitations of the possible qualification measurements as well as potential limitations arising from the given test procedures themselves

    Data from: Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession

    No full text
    Plant litter decomposition is one of the most important processes in terrestrial ecosystems, as it is a key factor in nutrient cycling. Decomposition rates depend on environmental factors, but also plant traits, as these determine the character of detritus. We measured litter decomposition rate for 57 common tree species displaying a variety of functional traits within four sites in primary and four sites in secondary tropical forest in Madang Province, Papua New Guinea. The phylogenetic relationships between these trees were also estimated using molecular data. The leaves collected from different tree species were dried for two days, placed into detritus bags and exposed to ambient conditions for two months. Nitrogen, carbon and ash content were assessed as quantitative traits and used together with a phylogenetic variance-covariance matrix as predictors of decomposition rate. The analysis of the tree species composition from 96 quadrats located along a successional gradient of swidden agriculture enabled us to determine successional preferences for individual species. Nitrogen content was the only functional trait measured to be significantly positively correlated with decomposition rate. Controlling for plant phylogeny did not influence our conclusions, but including phylogeny demonstrated that the mainly early successional family Euphorbiaceae is characterized by a particularly high decomposition rate. The acquisitive traits (high nitrogen content and low wood density) correlated with rapid decomposition were characteristic for early successional species. Decomposition rate thus decreased from early successional to primary forest species. However, the decomposition of leaves from the same species was significantly faster in primary than in secondary forest stands, very probably because the high humidity of primary forest environments keeps the decomposing material wetter

    Data from: Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession

    No full text
    Plant litter decomposition is one of the most important processes in terrestrial ecosystems, as it is a key factor in nutrient cycling. Decomposition rates depend on environmental factors, but also plant traits, as these determine the character of detritus. We measured litter decomposition rate for 57 common tree species displaying a variety of functional traits within four sites in primary and four sites in secondary tropical forest in Madang Province, Papua New Guinea. The phylogenetic relationships between these trees were also estimated using molecular data. The leaves collected from different tree species were dried for two days, placed into detritus bags and exposed to ambient conditions for two months. Nitrogen, carbon and ash content were assessed as quantitative traits and used together with a phylogenetic variance-covariance matrix as predictors of decomposition rate. The analysis of the tree species composition from 96 quadrats located along a successional gradient of swidden agriculture enabled us to determine successional preferences for individual species. Nitrogen content was the only functional trait measured to be significantly positively correlated with decomposition rate. Controlling for plant phylogeny did not influence our conclusions, but including phylogeny demonstrated that the mainly early successional family Euphorbiaceae is characterized by a particularly high decomposition rate. The acquisitive traits (high nitrogen content and low wood density) correlated with rapid decomposition were characteristic for early successional species. Decomposition rate thus decreased from early successional to primary forest species. However, the decomposition of leaves from the same species was significantly faster in primary than in secondary forest stands, very probably because the high humidity of primary forest environments keeps the decomposing material wetter
    corecore