17 research outputs found

    CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling

    Get PDF
    Integrin-dependent assembly of the fibronectin (Fn) matrix plays a central role in vertebrate development. We identify CD98hc, a membrane protein, as an important component of the matrix assembly machinery both in vitro and in vivo. CD98hc was not required for biosynthesis of cellular Fn or the maintenance of the repertoire or affinity of cellular Fn binding integrins, which are important contributors to Fn assembly. Instead, CD98hc was involved in the cell's ability to exert force on the matrix and did so by dint of its capacity to interact with integrins to support downstream signals that lead to activation of RhoA small GTPase. Thus, we identify CD98hc as a membrane protein that enables matrix assembly and establish that it functions by interacting with integrins to support RhoA-driven contractility. CD98hc expression can vary widely; our data show that these variations in CD98hc expression can control the capacity of cells to assemble an Fn matrix, a process important in development, wound healing, and tumorigenesis

    CD98hc facilitates B cell proliferation and adaptive humoral immunity.

    Get PDF
    The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates

    Cyclic uniaxial cell stretching in tissue culture using a LEGOÂź-based mechanical stretcher and a polydimethylsiloxane stretchable vessel

    No full text
    Summary: Mechanical signals are essential for the regulation of many biological processes. Therefore, it has become paramount to account for these mechanical parameters when exploring biological processes. Here, we describe a protocol to apply cyclic uniaxial stretch on cells in culture using a LEGOŸ-based mechanical stretcher and a flexible custom-made polydimethylsiloxane culture vessel as well as validated downstream applications. While this system offers an out-of-the-box limited type of simulation, it provides a reliable and low-cost opportunity to perform cell stretching.For complete details on the use and execution of this protocol, please refer to Boulter et al. (2020)

    Blocking the α4 integrinαpaxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site

    No full text
    Antagonists to α4 integrin show promise for several autoimmune and inflammatory diseases but may exhibit mechanism-based toxicities. We tested the capacity of blockade of α4 integrin signaling to perturb functions involved in inflammation, while limiting potential adverse effects. We generated and characterized mice bearing a Y991A mutation in α4 integrin [α4(Y991A) mice], which blocks paxillin binding and inhibits α4 integrin signals that support leukocyte migration. In contrast to the embryonic-lethal phenotype of α4 integrin–null mice, mice bearing the α4(Y991A) mutation were viable and fertile; however, they exhibited defective recruitment of mononuclear leukocytes into thioglycollate-induced peritonitis. α4 Integrins are essential for definitive hematopoiesis; however, the α4(Y991A) mice had intact lymphohematopoiesis and, with the exception of reduced Peyer’s patches, normal architecture and cellularity of secondary lymphoid tissues. We conclude that interference with α4 integrin signaling can selectively impair mononuclear leukocyte recruitment to sites of inflammation while sparing vital functions of α4 integrins in development and hematopoiesis

    CD98hc (SLC3A2) Loss Protects Against Ras-Driven Tumorigenesis by Modulating Integrin-Mediated Mechanotransduction

    No full text
    CD98hc (SLC3A2) is the heavy chain component of the dimeric transmembrane glycoprotein CD98, which comprises the large neutral amino acid transporter LAT1 (SLC7A5) in cells. Overexpression of CD98hc occurs widely in cancer cells, and is associated with poor prognosis clinically, but its exact contributions to tumorigenesis are uncertain. In this study, we showed that that genetic deficiency of CD98hc protects against Ras-driven skin carcinogenesis. Deleting CD98hc after tumor induction was also sufficient to cause regression of existing tumors. Investigations into the basis for these effects defined two new functions of CD98hc that contribute to epithelial cancer beyond an intrinsic effect on CD98hc on tumor cell proliferation. First, CD98hc increased the stiffness of the tumor microenvironment. Second, CD98hc amplified the capacity of cells to respond to matrix rigidity, an essential factor in tumor development. Mechanistically, CD98hc mediated this stiffness-sensing by increasing Rho kinase (ROCK) activity, resulting in increased transcription mediated by YAP/TAZ, a nuclear relay for mechanical signals. Our results suggest that CD98hc contributes to carcinogenesis by amplifying a positive feedback loop which increases both extracellular matrix stiffness and resulting cellular responses. This work supports a rationale to explore the use of CD98hc inhibitors as cancer therapeutics

    Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2)

    No full text
    Activation of vascular smooth muscle cells (VSMCs) to migrate and proliferate is essential for the formation of intimal hyperplasia. Hence, selectively targeting activated VSMCs is a potential strategy against vaso-occlusive disorders such as in-stent restenosis, vein-graft stenosis, and transplant vasculopathy. We show that CD98 heavy chain (CD98hc) is markedly up-regulated in neointimal and cultured VSMCs, and that activated but not quiescent VSMCs require CD98hc for survival. CD98hc mediates integrin signaling and localizes amino acid transporters to the plasma membrane. SMC-specific deletion of CD98hc did not affect normal vessel morphology, indicating that CD98hc was not required for the maintenance of resident quiescent VSMCs; however, CD98hc deletion reduced intimal hyperplasia after arterial injury. Ex vivo and in vitro, loss of CD98hc suppressed proliferation and induced apoptosis in VSMCs. Furthermore, reconstitution with CD98hc mutants showed that CD98hc interaction with integrins was necessary for the survival of VSMCs. These studies establish the importance of CD98hc in VSMC proliferation and survival. Furthermore, loss of CD98hc was selectively deleterious to activated VSMCs while sparing resident quiescent VSMCs, suggesting that activated VSMCs are physiologically dependent on CD98hc, and hence, CD98hc is a potential therapeutic target in vaso-occlusive disorders
    corecore