487 research outputs found

    Measurement of the Fermi Constant by FAST

    Full text link
    An initial measurement of the lifetime of the positive muon to a precision of 16 parts per million (ppm) has been performed with the FAST detector at the Paul Scherrer Institute. The result is tau_mu = 2.197083 (32) (15) microsec, where the first error is statistical and the second is systematic. The muon lifetime determines the Fermi constant, G_F = 1.166353 (9) x 10^-5 GeV^-2 (8 ppm).Comment: 15 pages, 6 figure

    Pattern formation in leaves via small RNA mobility

    Get PDF
    Small RNAs, including microRNAs (miRNAs) and trans-acting short interfering RNAs (ta-siRNAs), have important regulatory roles in development. In plants, members of these classes of small RNAs act to pattern the adaxial–abaxial (dorsal–ventral) axis of leaves. The AUXIN-RESPONSE FACTOR (ARF) family members ARF3 and ARF4 are together necessary to establish abaxial (ventral) fate in leaves. ARF3 and ARF4 are targets of ta-siRNAs that are termed “tasiR-ARFs.” To begin to understand the possible role of tasiR-ARFs in leaf polarity, we have localized the biogenesis components of the tasiR-ARF pathway, including the microRNA miR390, the activity of the ARGONAUTE gene required for miR390 activity (AGO7), and the activity of tasiR-ARFs themselves. We provide evidence that the tasiR-ARF pathway in Arabidopsis acts non-cell autonomously to maintain the polarized accumulation of ARF3 in leaf primordia. Small RNAs (both miR390 and tasiR-ARFs) in this specialized RNAi pathway may contribute to its non-cell autonomous activity, as they accumulate outside their discrete regions of biogenesis. We propose that small RNAs can possibly function as mobile inductive signals to direct patterning events during developmen

    Caloric curve in Au + Au collisions

    Get PDF
    Realistic caloric curves are obtained for 197Au+197Au^{197}Au + ^{197}Au reaction with incident energy ranging from 35 to 130 MeV/nucleon in the dynamic statistical multifragmentation model. It is shown that for excitation energy 3 to 8 MeV/nucleon, the temperature remains constant in the range 5 to 6 MeV, which is close to experiment. The mechanism of energy deposition through the tripartition of colliding system envisaged in this model together with inter-fragment nuclear interaction are found to play important role. A possible signature of liquid-gas phase transition is seen in the specific heat distribution calculated from these caloric curves, and the critical temperature is found to be \sim 6 to 6.5 MeV.Comment: Revtex, 10 pages, 4 postscipt figures, To appear in Phys. Rev. C (Rapid Communications

    Effect of Flow on Caloric Curve for Finite Nuclei

    Full text link
    In a finite temperature Thomas-Fermi theory, we construct caloric curves for finite nuclei enclosed in a freeze-out volume few times the normal nuclear volume, with and without inclusion of flow. Without flow, the caloric curve indicates a smooth liquid-gas phase transition whereas with flow, the transition may be very sharp. We discuss these results in the context of two recent experiments, one for heavy symmetric system (Au + Au at 600A MeV) and the other for highly asymmetric system (Au + C at 1A GeV) where different behaviours in the caloric curves are seen.Comment: 11 pages revtex; 4 figs; version to appear in Phys. Rev. Let

    Regulation of Small RNA Accumulation in the Maize Shoot Apex

    Get PDF
    MicroRNAs (miRNAs) and trans-acting siRNAs (ta-siRNAs) are essential to the establishment of adaxial–abaxial (dorsoventral) leaf polarity. Tas3-derived ta-siRNAs define the adaxial side of the leaf by restricting the expression domain of miRNA miR166, which in turn demarcates the abaxial side of leaves by restricting the expression of adaxial determinants. To investigate the regulatory mechanisms that allow for the precise spatiotemporal accumulation of these polarizing small RNAs, we used laser-microdissection coupled to RT-PCR to determine the expression profiles of their precursor transcripts within the maize shoot apex. Our data reveal that the pattern of mature miR166 accumulation results, in part, from intricate transcriptional regulation of its precursor loci and that only a subset of mir166 family members contribute to the establishment of leaf polarity. We show that miR390, an upstream determinant in leaf polarity whose activity triggers tas3 ta-siRNA biogenesis, accumulates adaxially in leaves. The polar expression of miR390 is established and maintained independent of the ta-siRNA pathway. The comparison of small RNA localization data with the expression profiles of precursor transcripts suggests that miR166 and miR390 accumulation is also regulated at the level of biogenesis and/or stability. Furthermore, mir390 precursors accumulate exclusively within the epidermal layer of the incipient leaf, whereas mature miR390 accumulates in sub-epidermal layers as well. Regulation of miR390 biogenesis, stability, or even discrete trafficking of miR390 from the epidermis to underlying cell layers provide possible mechanisms that define the extent of miR390 accumulation within the incipient leaf, which patterns this small field of cells into adaxial and abaxial domains via the production of tas3-derived ta-siRNAs

    Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gPg_P

    Full text link
    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured μ\mu^- disappearance rate in hydrogen and the world average for the μ+\mu^+ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the μp\mu p atom is measured to be ΛS=725.0±17.4s1\Lambda_S=725.0 \pm 17.4 s^{-1}, from which the induced pseudoscalar coupling of the nucleon, gP(q2=0.88mμ2)=7.3±1.1g_P(q^2=-0.88 m_\mu^2)=7.3 \pm 1.1, is extracted. This result is consistent with theoretical predictions for gPg_P that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007

    Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

    Get PDF
    We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let

    Muon Physics: A Pillar of the Standard Model

    Full text link
    Since its discovery in the 1930s, the muon has played an important role in our quest to understand the sub-atomic theory of matter. The muon was the first second-generation standard-model particle to be discovered, and its decay has provided information on the (Vector -Axial Vector) structure of the weak interaction, the strength of the weak interaction, G_F, and the conservation of lepton number (flavor) in muon decay. The muon's anomalous magnetic moment has played an important role in restricting theories of physics beyond the standard standard model, where at present there is a 3.4 standard-deviation difference between the experiment and standard-model theory. Its capture on the atomic nucleus has provided valuable information on the modification of the weak current by the strong interaction which is complementary to that obtained from nuclear beta decay.Comment: 8 pages, 9 figures. Invited paper for the Journal of Physical Society in Japan (JPSJ), Special Topics Issue "Frontiers of Elementary Particle Physics, The Standard Model and beyond
    corecore