5,846 research outputs found

    Development and flight test of a helicopter, X-band, portable precision landing system concept

    Get PDF
    A beacon landing system (BLS) is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. The system is based on state-of-of-the-art X-band radar technology and digital processing techniques. The bLS airborne hardware consists of an X-band receiver and a small micropreocessor, installed in conjunction wht the aircraft instrument landing system (ILS) receiver. The microprocessor analyzes the X-band, BLS pulses and outputs ILS-compatible localizer and glide slope signals. Range information is obtained using an on-board weather/mapping radar in conjunction with the BLS. The ground station is an inexpensive, portable unit; it weighs less than 70 lb and can be quickly deployed at a landing site. Results from the flight-test program show that the BLS has a significant potential for providing rotorcaraft with low-cost, precision instrument approach capability in remote areas

    Dry Matter and Nutrient Losses for Large Round Hay Bales Stored Outside

    Get PDF
    Large round bales have become a commonly used means for packaging hay. Some questions still remain, however, concerning the best techniques for handling, storing and feeding these packages. In this study, three different arrangements of bales were used to compare storage characteristics over a 1-year period

    A preliminary phylogenetic analysis of the Capsalidae (Platyhelminthes : Monogenea : Monopisthocotylea) inferred from large subunit rDNA sequences

    Get PDF
    Phylogenetic relationships within the Capsalidae (Monogenea) were examined using large subunit ribosomal DNA sequences from 17 capsalid species (representing 7 genera, 5 subfamilies), 2 outgroup taxa (Monocotylidae) plus Udonella caligorum (Udonellidae). Trees were constructed using maximum likelihood, minimum evolution and maximum parsimony algorithms. An initial tree, generated from sequences 315 bases long, suggests that Capsalinae, Encotyllabinae, Entobdellinae and Trochopodinae are monophyletic, but that Benedeniinae is paraphyletic. Analyses indicate that Neobenedenia, currently in the Benedeniinae, should perhaps be placed in a separate subfamily. An additional analysis was made which omitted 3 capsalid taxa (for which only short sequences were available) and all outgroup taxa because of alignment difficulties. Sequence length increased to 693 bases and good branch support was achieved. The Benedeniinae was again paraphyletic. Higher-level classification of the Capsalidae, evolution of the Entobdellinae and issues of species identity in Neobenedenia are discussed.I. D. Whittington, M. R. Deveney, J. A. T. Morgan, L. A. Chisholm and R. D. Adlar

    Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences

    Get PDF
    Epigenetic mechanisms are increasingly recognised as integral to the adaptation of species that face environmental changes. In particular, empirical work has provided important insights into the contribution of epigenetic mechanisms to the persistence of clonal species, from which a number of verbal explanations have emerged that are suited to logical testing by proof-of-concept mathematical models. Here, we present a stochastic agent-based model and a related deterministic integrodifferential equation model for the evolution of a phenotype-structured population composed of asexually-reproducing and competing organisms which are exposed to novel environmental conditions. This setting has relevance to the study of biological systems where colonising asexual populations must survive and rapidly adapt to hostile environments, like pathogenesis, invasion and tumour metastasis. We explore how evolution might proceed when epigenetic variation in gene expression can change the reproductive capacity of individuals within the population in the new environment. Simulations and analyses of our models clarify the conditions under which certain evolutionary paths are possible and illustrate that while epigenetic mechanisms may facilitate adaptation in asexual species faced with environmental change, they can also lead to a type of “epigenetic load” and contribute to extinction. Moreover, our results offer a formal basis for the claim that constant environments favour individuals with low rates of stochastic phenotypic variation. Finally, our model provides a “proof of concept” of the verbal hypothesis that phenotypic stability is a key driver in rescuing the adaptive potential of an asexual lineage and supports the notion that intense selection pressure can, to an extent, offset the deleterious effects of high phenotypic instability and biased epimutations, and steer an asexual population back from the brink of an evolutionary dead end

    Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments

    Get PDF
    An enduring puzzle in evolutionary biology is to understand how individuals and populations adapt to fluctuating environments. Here we present an integro-differential model of adaptive dynamics in a phenotype-structured population whose fitness landscape evolves in time due to periodic environmental oscillations. The analytical tractability of our model allows for a systematic investigation of the relative contributions of heritable variations in gene expression, environmental changes and natural selection as drivers of phenotypic adaptation. We show that environmental fluctuations can induce the population to enter an unstable and fluctuation-driven epigenetic state. We demonstrate that this can trigger the emergence of oscillations in the size of the population, and we establish a full characterisation of such oscillations. Moreover, the results of our analyses provide a formal basis for the claim that higher rates of epimutations can bring about higher levels of intrapopulation heterogeneity, whilst intense selection pressures can deplete variation in the phenotypic pool of asexual populations. Finally, our work illustrates how the dynamics of the population size is led by a strong synergism between the rate of phenotypic variation and the frequency of environmental oscillations, and identifies possible ecological conditions that promote the maximisation of the population size in fluctuating environments

    Is attending a mental process?

    Get PDF
    The nature of attention has been the topic of a lively research programme in psychology for over a century. But there is widespread agreement that none of the theories on offer manage to fully capture the nature of attention. Recently, philosophers have become interested in the debate again after a prolonged period of neglect. This paper contributes to the project of explaining the nature of attention. It starts off by critically examining Christopher Mole’s prominent “adverbial” account of attention, which traces the failure of extant psychological theories to their assumption that attending is a kind of process. It then defends an alternative, process-based view of the metaphysics of attention, on which attention is understood as an activity and not, as psychologists seem to implicitly assume, an accomplishment. The entrenched distinction between accomplishments and activities is shown to shed new light on the metaphysics of attention. It also provides a novel diagnosis of the empirical state of play

    Practical synthetic strategies towards lipophilic 6-iodotetrahydroquinolines and -dihydroquinolines

    Get PDF
    The synthesis of novel tetrahydroquinolines (THQ) and dihydroquinolines (DHQ) are reported using three practical, scalable synthetic approaches to access highly lipophilic analogues bearing a 6-iodo substituent, each with a different means of cyclisation. A versatile and stable quinolin-2-one intermediate was identified, which could be reduced to the corresponding THQ with borane reagents, or to the DHQ with diisobutylaluminium hydride via a novel elimination that is more favourable at higher temperatures. Coupling these strongly electron-donating scaffolds to electron-accepting moieties caused the resulting structures to exhibit strong fluorescence

    Kelvin mode of a vortex in a nonuniform Bose-Einstein condensate

    Full text link
    In a uniform fluid, a quantized vortex line with circulation h/M can support long-wavelength helical traveling waves proportional to e^{i(kz-\omega_k t)} with the well-known Kelvin dispersion relation \omega_k \approx (\hbar k^2/2M) \ln(1/|k|\xi), where \xi is the vortex-core radius. This result is extended to include the effect of a nonuniform harmonic trap potential, using a quantum generalization of the Biot-Savart law that determines the local velocity V of each element of the vortex line. The normal-mode eigenfunctions form an orthogonal Sturm-Liouville set. Although the line's curvature dominates the dynamics, the transverse and axial trapping potential also affect the normal modes of a straight vortex on the symmetry axis of an axisymmetric Thomas-Fermi condensate. The leading effect of the nonuniform condensate density is to increase the amplitude along the axis away from the trap center. Near the ends, however, a boundary layer forms to satisfy the natural Sturm-Liouville boundary conditions. For a given applied frequency, the next-order correction renormalizes the local wavenumber k(z) upward near the trap center, and k(z) then increases still more toward the ends.Comment: 9 pages, 1 figur
    • …
    corecore