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Abstract

An enduring puzzle in evolutionary biology is to understand how individuals and populations adapt to fluctuating
environments. Here we present an integro-differential model of adaptive dynamics in a phenotype-structured population
whose fitness landscape evolves in time due to periodic environmental oscillations. The analytical tractability of our model
allows for a systematic investigation of the relative contributions of heritable variations in gene expression, environmental
changes and natural selection as drivers of phenotypic adaptation. We show that environmental fluctuations can induce
the population to enter an unstable and fluctuation-driven epigenetic state. We demonstrate that this can trigger the
emergence of oscillations in the size of the population, and we establish a full characterisation of such oscillations.
Moreover, the results of our analyses provide a formal basis for the claim that higher rates of epimutations can bring
about higher levels of intrapopulation heterogeneity, whilst intense selection pressures can deplete variation in the
phenotypic pool of asexual populations. Finally, our work illustrates how the dynamics of the population size is led by a
strong synergism between the rate of phenotypic variation and the frequency of environmental oscillations, and identifies

possible ecological conditions that promote the maximisation of the population size in fluctuating environments.
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1. Introduction

Evolution can be thought of as a complex and dy-
namic interplay between hereditary phenotypic modifica-
tions, environmental change and natural selection. In this
framework, it is largely an open question in evolutionary
biology how individuals and populations adapt to fluctu-
ating environments.

Previous theoretical and experimental work involving
asexual populations has shed some light on the way pheno-
typic diversity can evolve in the presence of environmental
fluctuations [1]-[10]. With the aim of dissecting the rel-
ative contributions of phenotypic variation, environmental
oscillations and natural selection as drivers of phenotypic
adaptation, here we formulate and analyse an integro-
differential model of adaptive dynamics in a phenotype-
structured population embedded in a changing environ-
ment. Models of this type can be derived from stochastic
individual-based models in the limit of large numbers of
individuals [11, 12], and they have been proven to consti-
tute a suitable conceptual apparatus to study evolutionary
processes in population dynamics [13]-]20].
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We focus on the ecological scenario where a population
has a fitness landscape with one single peak, the location
of which undergoes periodic oscillations in time. Due to
random epimutation events (which change the way genes
are expressed ), individuals within this population undergo
stochastic variation in phenotype [21]-[24]. We assume
that small (large) epimutations correspond to small (large)
phenotypic changes, and noting that small epimutations
occur at a much higher frequency than large epimuta-
tions [25], we model the effects of heritable variations in
gene expression by means of a diffusion operator, along the
lines of Lorz et al. [26], Mirrahimi et al. [27], and Perthame
et al. [28]. Moreover, in order to take into account the fact
that epimutations can be inherently biased towards par-
ticular variants [33]-[36], we follow the modelling strategy
presented in Chisholm et al. [15, 37] and include a drift
operator in our model.

From the mathematical point of view, our work fol-
lows earlier papers on the analysis of integro-differential
equations that arise in models of adaptive evolution of
phenotype-structured populations [26]—-[31]. These papers
are devoted to the study of solutions of such equations
when the rate of diffusion across the phenotypic space is
small or tends to zero. The main novelty of our work is
that we do not impose any smallness assumptions on the
diffusion rate. We also allow the presence of a drift term
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in the governing equation. In this setting, we are able to
establish the existence of periodic solutions with a Gaus-
sian profile, without any specific assumptions concerning
the nature of the periodic variation in the trait associated
with the maximum of the fitness landscape.

Exploiting the analytical tractability of the model, we
perform a systematic investigation of the ways in which
the presence of a time-varying environment, the evolution
of the epigenetic state, the level of phenotypic diversity
and the size of the population are shaped by the rate of
epimutations, the degree of bias in the generation of novel
phenotypic variants, the strength of natural selection, and
the frequency of environmental oscillations. The generality
of this model makes the results of our study applicable to a
broad range of asexual populations evolving in fluctuating
environments.

2. The model

We study evolutionary dynamics in a well-mixed pop-
ulation that is structured by a phenotypic trait x € R. In-
dividuals inside the population proliferate through asexual
reproduction, die due to competition for limited resources,
and undergo epimutations. To reduce biological complex-
ity to its essence, we make the prima facie assumption that
stochastic variations in gene expression yield infinitesim-
ally small phenotypic modifications. Moreover, we let the
environment evolve independently of the population [32].
Despite these simplifications, the model captures a wide
spectrum of ecological scenarios.

The phenotype distribution of the population at time
t > 01is characterised by the population density ¢(z,t) > 0,
which evolves through the following integro-differential equa-
tion:

% a% = ﬁg—ij + R(:v,t, Q(t))c, (2.1)

with
oft) = / " (a1 dr, (2.2)
c(z,t) >0 asz — +oo (2.3)

and
c(x,0) € L NL=(R), ¢(x,0)>0ae onR. (2.4)

It is natural to characterise the population’s phenotype
distribution in terms of its mean u(t) and standard devi-
ation o(t), given in the usual way by

1

w(t) = o0 /_OOJ: c(x,t) de, (2.5)
(2.6)

2y = L [ 2% ez, t) de — pu(t)?
0= [ atewtd—p? @0

If the distribution ¢(x, t) is unimodal and reasonably sym-
metric, the mean phenotype will be close to the most pre-
valent phenotype, which has greater direct biological in-
terest.

In Equation (2.1), the diffusion term models the effects
of heritable variations in gene expression, which occur at
the average rate § € Ry. The drift term accounts for the
fact that epimutations can be more likely to produce phen-
otypic variations in certain directions, since the process
leading to the introduction of novel phenotypic variants
may be not purely random [33]-[36]. The sign of the para-
meter a € R models the direction of bias, and the absolute
value of a measures the degree of bias. Natural selection
is driven here by the fitness function R(:E,t, g(t)), which
models the net proliferation rate of individuals with phen-
otypic trait z at time ¢, given the total population size
o(t). Throughout this paper, we make use of the following
definition:

R(z,t,0(t)) = b(z,t) — ro(t).

The above definition relies on the idea that a higher total
population corresponds to less available resources; there-
fore, we let individuals inside the population die at rate
ko(t), where the parameter x € R, models the average
rate of death due to intrapopulation competition. More-
over, we let individuals with phenotypic trait = at time ¢
proliferate or die at rate b(x,t). Since we focus on a pop-
ulation with a single-peaked fitness landscape, we assume
that the function b is strictly concave in its first argument
at each time instant ¢. In particular, we focus on the case
where

(2.8)

2

b(z,t) =7 — elz—(t)], (2.9)
where v € Ry, € € Ry and for some 7" > 0
v :[0,00) = R, o(t) =t +T). (2.10)

The parameter v and the coefficient € provide a measure
of the strength of natural selection. Definition (2.9) mim-
ics the effects of a fluctuating environment that induces
the phenotypic trait associated with the maximum of the
fitness landscape to change over time with period T'.

3. Analysis of the model

Subject to a single condition below [the inequality (3.5)],
there is a solution c(z,t) = C(z,t) > 0 of the problem
(2.1)-(2.4), where:

(i) C(z,t) is periodic with period T}
(ii) C(x,t) has a Gaussian profile,

) = 22( )" en{ ()"l - wio’).

(3.1)
where p(t) and o(t) are periodic (this ensures that
the mean phenotype is also the most prevalent one);



(iii) the instantaneous most prevalent phenotype u(t) is

T 1/2
/ e2(eP) Tp(r)dr

0

2(6/8)1/2672(6ﬁ)1/2t
/’L(t) = 62(6ﬂ)1/2T _ 1

t
+2(65)1/26_2(65)1/2t/ 62(55)1/2T<P(T)d7
0

«
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and it oscillates with period T7

(3.2)

(iv) the mean (with respect to time) of the most prevalent
phenotype is

(0%
=0+ ——— 3.3
0 @+2(65)1/2’ (3.3)
with
1 T
P=— t)dt;
@ T/o p(t)dt;

(v) the instantaneous total population o(t) oscillates

— with period T'/2 in the case when o« = 0 and
p(t+T/2) = —o(1),
— with period T in all other cases,

and it is given by

k=1 exp [/OtQ(r)dT]

s r+ /Ot exp[/ogQ(’r)dT}df’
with
) /OT exp [/;Q(T)dr] de
exp UOT Q(T)dT} 1
and

Qt) = — e[p(t) — u(®)]* = (eB)"/%;

(vi) the mean (with respect to time) of the total popula-

tion is
o= ()25 /0 e — ()]t} (3.4)

For these conclusions to hold, the only additional restric-
tion on the parameters «, 3, v and € and the function ¢(t)
is that

€

1= = £ [ e - uel a0 3

corresponding to ¢ > 0.

The proofs of (i)—(vi) are detailed in Appendix A. These
results are illustrated by means of numerical solutions in
Section 4, and they convey the following pieces of ecolo-
gical information.

(i) Oscillations with period T in the location of the
fitness maximum induce oscillations with the same
period in the phenotype distribution ¢(z, t).

(ii) The oscillating phenotype distribution is always un-
imodal, and the mean phenotype is always close to
the most prevalent phenotype. The measure of phen-
otypic diversity o?(t) remains constant in time and
satisfies

o(t) = -

for all ¢ > 0,

i.e, phenotypic diversity increases with the rate of
epimutations 8 and decreases with the strength of
natural selection e.

(iii) The most prevalent phenotype p(t) oscillates with
period T.

(iv) A bias in the generation of novel phenotypic variants
shifts the time average i of the most prevalent phen-
otype away from the time average ¢ of the trait as-
sociated with the maximum of the fitness landscape.

(v) The total population o(t) oscillates with period T" ex-
cept under some some special restrictions (absence of
bias in the generation of novel phenotypic variants
and a certain temporal symmetry in the periodic en-
vironmental fluctuations) when the total population
can oscillate with period T'/2.

(vi) The time average g of the global population density
depends in a nonlinear way on the period of oscilla-
tions in the fittest phenotype T, the rate of epimuta-
tions 3, and the strength of natural selection e. The
explicit dependence of g on the mean of the squared
distance between p(t) and the fittest phenotype ¢(t)
also ensures its dependence on the drift parameter
Q.

Remark 1. Numerical simulations (data not shown), sug-
gest that analogous results hold in the case where, instead
of considering epimutations through a differential operator,
an integral operator is used to model the effects of genetic
variations, on the condition that the mutation kernel is
Gaussian and the related variance is sufficiently small.

4. Numerical solutions

In order to illustrate the analytical results established
in the previous section, here we present the results of nu-
merical solutions for the mathematical problem (2.1)—(2.4)
with ¢ € [0;4T], z € [-L; L] and

_ 2
==
Further technical details of the numerical solution method

are provided in Appendix B, but we mention here sev-
eral important general points. The model that we have

o(t) == gsin (wt), w



analysed in full mathematical detail is defined with = €
(—00,00), but the finite-interval numerical solutions ex-
hibit the same qualitative behaviour. In more detail, the
time average of the most prevalent phenotype and the time
average of the total population found by our numerical
procedure match closely the values predicted by (iv) and
(vi) once a very short interval of transient behaviour has
finished. Although the initial total population chosen in
our numerical computations is significantly different from
the time-averaged mean population in the periodic solu-
tion, the time taken for clear periodic behaviour with the
correct mean population averaged over a period to emerge
is short.

4.1. Environmental fluctuations lead to oscillations in the
phenotypic distribution, in the dominant phenotype,
and in the total population

We are considering an ecological scenario where the
population has a fitness landscape with one single global
maximum, whose location undergoes periodic oscillations
due to the effects of environmental fluctuations. Accord-
ingly, the results established by (i),(ii),(iii),(v) and illus-
trated in Figure 1(A) show that, independently from the
profile of the phenotypic distribution at the beginning of
observations (i.e., the initial condition c°(z)), the pop-
ulation quickly becomes unimodal. Moreover, as is high-
lighted by Figure 1(A),(C),(D) and Figure 2, the T-periodic
oscillations of the trait associated with the maximum of
the fitness landscape ¢(t) cause the emergence of oscil-
lations in the phenotypic distribution ¢(z,t), in the most

prevalent phenotype u(t), and in the total population o(t).

Both the phenotypic distribution and the dominant
phenotype oscillate in time with period 7. On the other
hand, with the exception of an initial boundary-layer, the
total population oscillates with period 7/2 when there
is no bias in the generation of novel phenotypic variants

(i.e., when o = 0), and with period T in the presence of

bias (i.e., when « # 0). The degree of bias |a| affects

both the profile and the amplitude of the oscillations in
the total population (see Figure 2(B)), while it leaves un-
altered the oscillations in the most prevalent phenotype

(see Figure 2(A)).

4.2. The level of phenotypic diversity increases with the
rate of epimutations and decreases with the strength
of natural selection

The result established by (ii) and illustrated in Fig-

ure 1(B) demonstrates that the level of phenotypic di-

versity o2 remains constant in time and it is not altered by

environmental fluctuations. Moreover, the phase diagram
presented in Figure 3 illustrates how the level of pheno-
typic diversity is affected by the rate of epimutations

and the strength of natural selection e. In summary, o2

increases with 8 and decreases with e. Therefore, as one

would expect, phenotypic diversity is brought about by
frequent epimutations and it is curtailed by stronger selec-
tion pressures.
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Figure 1: Environmental fluctuations cause the emer-
gence of oscillations in the phenotypic distribution, in
the most prevalent phenotype, and in the total pop-
ulation. (A) Plot of the phenotypic distribution c¢(¢,x) for
t € [0;4T]. The white line corresponds to the time average
of the most prevalent phenotype i from (iv). (B) Plots of
the phenotypic distribution c¢(z,t) at ¢t ~ 1.2 T (solid line),
t ~ 1.5 T (dashed line) and ¢t =~ 1.9 T' (dotted line). (C) Plot of
the most prevalent phenotype u(t) for ¢ € [0;4T]. The value of
the time average fi from (iv) is highlighted by the red line. (D)
Plot of the total population g(t) for t € [0;47]. The red line
corresponds to the time average g from (vi). Further technical
details of the numerical solutions are provided in Appendix B.
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Figure 2: The period of oscillations in the total popula-
tion depends on the degree of bias in the generation of
novel phenotypic variants. (A) Plot of the most prevalent
phenotype p(t) for t € [0;477]. (B) Plot of the total population
o(t) for t € [0;4T]. The red lines highlight the time averages
of the most prevalent phenotype i1 and total population g from
(iv) and (vi), respectively. Solid, dashed and dotted lines cor-
respond to increasing degrees of bias in the generation of novel
phenotypic variants, that is, &« = 0 (solid lines), o = 1 (dashed
lines) and « = 2 (dotted lines). Further technical details of the
numerical solutions are provided in Appendix B.
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Figure 3: The level of phenotypic diversity depends on
the rate of epimutations and the strength of natural
selection. Plot of the level of phenotypic diversity o2 as a
function of the strength of natural selection € and the rate of
epimutations 8. Further technical details of the numerical solu-
tions are provided in Appendix B.

4.8. A bias in the generation of novel phenotypic variants
paves the way for suboptimal adaptation

The result established by (iv) suggests that a bias in
the generation of novel phenotypic variants paves the way
for suboptimal adaptation by shifting the time average of
the most prevalent phenotype i away from the time aver-
age of the fittest phenotype @ (i.e., the distance |@ — @
is different from zero when « # 0). This is illustrated by
the phase diagrams in Figure 4, which show that higher
degrees of bias |a| correspond to larger deviations in [
from @. Furthermore, the result established by (iv) and
illustrated in Figure 4 demonstrates that increasing either
the strength of natural selection € or the rate of epimuta-
tions [ acts to reduce the distance |z—@|. Taken together,
these results support the idea that, while a bias in the gen-
eration of novel phenotypic variants can cause suboptimal
adaptation, strong natural selection and frequent fluctu-
ations in gene expression can reduce the deviation of the
time average of the dominant phenotype in the population
from the time average of the most adapted phenotype.

4.4. The time average of the population size depends on a
complez interplay between the rate of phenotypic vari-
ation and the frequency of environmental fluctuations

The result established by (vi) demonstrates that the
mean (with respect to time) of the total population g is
the result of a complex interplay between the period T
of the oscillations in the trait associated with the max-
imum of the fitness landscape, the rate of epimutations /3,
the strength of natural selection €, and the time average
of the square of the distance between the most prevalent
phenotype p(t) and the fittest phenotype o(t).

In order to shed some light on the ecological condi-
tions that favour the maximisation of the average size of
asexual populations in fluctuating environments, we in-
vestigate the values of the epimutation rate that corres-
pond to higher values of the average total population, and
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Figure 4: A bias in the generation of novel phenotypic
variants paves the way for suboptimal adaptation. (A)
Plot of the distance between the time average of the most pre-
valent phenotype i and the time average of the fittest pheno-
type @ as a function of the strength of natural selection € and
the degree of bias in the generation of novel phenotypic vari-
ants a. (B) Plot of the distance between the time average of
the most prevalent phenotype i and the time average of the
fittest phenotype @ as a function of the rate of epimutations
[ and the degree of bias in the generation of novel phenotypic
variants a. Further technical details of the numerical solutions
are provided in Appendix B.

whether these values vary with the period of environmental
fluctuations. To this end, we construct numerical solutions
while holding all parameters constant except for 7" and 3,
and we record the resulting values of g.

The results obtained are summarised in the phase dia-
gram of Figure 5, which shows how the mean of the total
population varies as a function of the period of environ-
mental oscillations and the rate of epimutations. In more
detail, when the environment changes rarely (i.e., for large
values of T), the larger values of the average total popu-
lation are attained for low values of the epimutation rate.
On the other hand, if environmental oscillations are mod-
erately fast (i.e., for intermediate values of T), higher epi-
mutation rates correspond to larger average total popu-
lations. Finally, in the case of fast environmental fluctu-
ations (i.e., for low values of T'), the mean of the total
population is maximised by some very low values of the
epimutation rate.

5. Discussion and conclusions

Recently, Serviedio and co-workers observed that an
important purpose of mathematical models in evolution-
ary research is “to act as ‘proof-of-concept’ tests of the
logic in verbal explanations, paralleling the way in which
empirical data are used to test hypotheses” [38]. In this
spirit, our goal here is to contribute to a systematic identi-
fication of the relative contributions of heritable variations
in gene expression, environmental changes and natural se-
lection as drivers of adaptation in populations that evolve
in fluctuating environments. To this end, we have presen-
ted an integro-differential model of adaptive dynamics in
a population that is genetically uniform, but structured
with respect to a phenotypic trait.



Figure 5: The time average of the population size de-
pends on a complex interplay between the rate of epi-
mutations and the frequency of environmental fluctu-
ations. Plot of the time average of the total population g as a
function of the period of environmental fluctuations T' € [0; 5]
and the rate of epimutations 8 € [0;1]. For each T, the value
of g is normalised with respect to maxg (7, 3). The white
line highlights the value of argmaxs (T, 8) with g given by

(vi). Further technical details of the numerical solutions are
provided in Appendix B.

Focusing on the case where the trait associated with
the maximum of the fitness landscape fluctuates in time
due to periodic environmental changes, we have shown
that environmental oscillations can induce the population
to enter an unstable and fluctuation-driven epigenetic state.
We have also demonstrated that this can trigger the emer-
gence of oscillations in the size of the population. Moreover,
we have traced out a possible connection between the fre-
quency of the oscillations and the presence of a bias in the
introduction of novel phenotypic variants, which suggests
a possible indirect way to quantitatively test and validate
(or dispute) existing hypotheses about bias-led evolution.
In this respect, an experimental setting analogous to that
presented in Acar et al. [1]—which relies on the use of
isogenic populations that evolve in laboratory-based fluc-
tuating environments—may prove to be useful.

A large body of evidence indicates that transcription
regulation is inherently stochastic at various levels and
can give rise to significant phenotypic heterogeneity within
asexual populations [21]-[24]. Our study provides some
insight into the way in which the level of phenotypic di-
versity depends on the strength of natural selection and the
rate of heritable variations in gene expression. Specifically,
the results of our analysis formalise the idea that higher
rates of epimutations lead to higher levels of intrapopula-
tion heterogeneity, whilst intense selection pressures can
deplete variation in the phenotypic pool of asexual pop-
ulations, thus causing less phenotypic diversity. This is
consistent with the experimental results presented in [39],
where it was found that a more gradual increase in ambient
CO3 concentration resulted in a substantially higher spe-
cies richness in a mycorrhizal fungi community, in compar-
ison to the abrupt change typical of other CO5 elevation
experiments.

It might be speculated that because epimutation rates
are small in comparison to selection coefficients, the dir-
ection of evolution is determined exclusively by natural
selection. On the contrary, here we have shown that a
bias in the introduction of novel phenotypic variants can
strongly influence the course of phenotypic adaptation,
even when the epimutation rate is small in comparison to
the strength of natural selection [40]. Our results indicate
that epimutational bias can pave the way for suboptimal
adaptation by inducing a shift between the more preval-
ent phenotypes in a population and the phenotypes that
are more successfully adapted to the surrounding environ-
ment. This effect escalates as the degree of bias increases,
but it can be offset by strong natural selection and frequent
fluctuations in gene expression.

Our analytical work provides evidence that the value
of the time average of the population size results from
a strong synergism between the period of environmental
oscillations and the rate of epimutations. Furthermore,
the results of our numerical solutions testify to the idea
that the mean size of the population is maximised by
low rates of phenotypic variation when the environment
changes rarely, whereas higher rates of epimutation pro-
mote a larger average population size in the presence of
moderately-fast environmental fluctuations. These find-
ings recapitulate, to an extent, the results presented in
previous theoretical and experimental work [1]-[10], and
provide evidence for the importance of stochastic pheno-
typic switching as a mechanism for coping with changing
environments. Finally, in the presence of fast environ-
mental oscillations, the maximisation of the mean pop-
ulation size is achieved through low rates of phenotypic
variation. In agreement with previous studies of pheno-
typic plasticity [41, 42], this result suggests that, in the
case where environmental changes are highly unpredict-
able, high rates of epimutation can increase rather than
decrease the risk of extinction.

Accordingly, we predict that environments which fluc-
tuate slowly favour individuals with low rates of stochastic
phenotypic variation. On the other hand, environments
that fluctuate more rapidly favour those individuals that
are endowed with high rates of phenotypic variation. How-
ever, if the rate of environmental fluctuations keeps in-
creasing, individuals with very low rates of phenotypic
variation will eventually revert to being the most com-
petitive in the struggle for survival.
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A. Proof of (i)-(vi)

In this appendix we prove the results (i)-(vi).

A.1. The differential equations for u(t) and o(t)

Since

log[C(x,t)] = log[o(t)] — (i)l/z [ — ,u()fﬂ2 + constant,

it follows that

L _ 20 () o= w0,

cot  oft) \B

10C €\ 1/2

cos=(5) [-no).
10%C eN1/2 € 2
e =—(5) +gl-ml?

and so inserting c(z,t) = C(z,t) in Eq. (2.1) as a trial
solution we find that we require the following equation to
hold as an identity:

If we expand both sides in powers of x, then the coefficients
of the terms in 22 match correctly (the trial solution was
chosen to achieve this), while the coefficients of z* and z°,
respectively, give us two differential equations:

(1) — a = =2(eB)p(t) + 2(eB)*p(1);
o'(t) €\1/2 ’ 1/2
o0 = (5) [On® —an] - @)
+eu(t)’ + 7 — ep(t)? — ro(t).

(A1)

(A.2)

We can tidy up these equations. Equation (A.1) can be
rewritten as a first-order linear equation,
W (1) +2(B) P ult) = a+2(eB) (), (A.3)

while on eliminating p/(t) from Eq. (A.2) using Eq. (A.1),
we find that

o) .
) = QO ol (4.4
where for brevity we have written
Q) =7 —€fio(t) — ()] — (eB)"/*. (A5)

A.2. Mean values of u(t) and o(t) if they are periodic

Before we investigate whether these differential equa-
tions have any solutions with the same periodicity as ¢(t),
we shall find what the mean values

1" I
= — t)dt 0= — t)dt
i=g | wd o= [ o

of p(t) and o(t), respectively, over a period would have to
be.

Integrating Eq. (A.3) over [0,7], dividing by T and
requiring ©(0) = u(T) leads to

(A.6)

(0%

Similarly, integrating Eq. (A.4) over [0, 7], dividing by T
and requiring 0(0) = o(T) leads to

(A.8)

K

o
o-2- = [ ama

T
- %{7 — (B - %/O [p(t) = p(t)]"dt}. (A9)

A.3. A periodic solution for pu(t)

Using the usual integrating factor technique for linear
ordinary differential equations of first order, we find that

& [ expl2(en) 2}
— avexpl2(e)"/2] + 2(eB)2 exp[2(eB) /2] p(1)
and so
1u(t) exp[2(eB8)"/?1] — p(0)
- z(%ﬁ{ew(emwﬂ -1}
+2(e8)? [ expl2(ed) rip(r)dr
0

from which it follows that

plt) = [1(0) = 5| el=2(e8) 24 + 5

1 2(eB) M2 expl—2(e) 1 / expl2(ef)!/?r)o(7)dr.

The periodicity condition pu(t + T') = u(t) will be met if
and only if

[1(0) = 5] evl-2(68) 1)

2(eB)
t+T
1 2(eB)/? exp|~2(ef)"/>T] / exp[2(e)"/27]p(r)dr
- [u(O) N 2(eﬂ)1/2}
+2(eﬂ)1/2/ exp[?(eﬂ)l/zT]cp(T)dT.
0



We now use the assumed periodicity of () to show that
1(0) can be chosen to achieve periodicity for p(t). We have

t+T
/O exp[2(eB)/27]p(r)dr
- / exp[2(e8) /2] () dr

t+T
4 /T exp[2(e)V/2r]ip(r)dr

T
- / expl2(e)/2r]p(r)dr
4 / exp[2(eB) /2 (T + &) p(T + €)de
0
T
- / expl2(ef)/2r]p(r)dr

+ exp[2(e8)!/T] / exp[2(e)/2€] p(€)

0

so the periodicity condition p(t + 7T') = p(t) will be met if
and only if

10) = 5 gyi7s) expl-2(e8) /T
+2(e8)" 2 exp[-2(e8) /2] [ expl2(ed) rle(r)ar
- [“(0) - 2(@3)1/2}
and we arrive at the requirement that
{“(0) N 2(65)1/2}
2(f)'/? g 1/2
= exp[2(6(5€3/2T] — /0 exp|2(eB8) Y ?7] (1) dr.

Hence we have determined a unique periodic solution for
w1(t), namely

€8)1/2 exp[—2(eB)1/2 T

u(t) =

+2(66)1/2exp[—2(66)1/2t]/0 exp[2(eB)Y 7] (T)dr

+ s

2(ep)1/2

As a check on our algebra, even though we know what

7t needs to be, we evaluate it by direct integration of the
solution that we have found. Observing that

(A.10)

1 T
T ), B expl-2(e)"/?Y
- —%{exp[—Q(eﬁ)l/QT] - 1}
= %eXp[—2(eB)1/2T}{eXp[Q(eﬁ)l/QT] — 1},

we see that

1 T
n=— t)dt
p= |t

- «

2(eB)!/?

+ %exp[—%ﬂ)wﬂ/o exp[2(eB)!/*7]ep(r)dr

T
+%/0 Z(Gﬂ)l/Qexp[—Q(eﬂ)l/zt]

X /Ot exp[2(eﬁ)1/27]<p(7)d7 dt.

If we interchange orders of integration in the double integ-
ral term, it becomes

7| e
T
x/ 2(eB)'/? exp[—2(eB)/?t)dt dr

= %/0 eXP[Q(Gﬂ)lﬂT}(p(T){exp[_g(eﬂ)lmﬂ
_ exp[fQ(Gﬂ)l/QT]}dT

exp[=2(f

1/2 T
—p - SPEZT [ explz(es) et

Hence the mean location of the instantaneously most pre-
valent phenotype is

o= W + @,
as we found earlier.

A.4. A periodic solution for o(t)

We shall now seek a periodic solution for o(t), given
that wherever u(t) appears we now use the periodic solu-
tion that we have constructed. We rewrite Eq. (A.4) as

o (t) .
0 + Q(t) = ko(t). (A.11)
Let 1
ot) = ()’ (A.12)
so that ¢'(t)/o(t) = —r'(t)/r(t), giving
r'(t) _ 1
ZOIMUTON

and we now have a first-order linear ordinary differential
equation:

' (t) + Q(t)r(t) = 1.

Since we were given that ¢(t) has period T and we have
proved that p(t) has period T, we know that Q(t) is also

(A.13)



periodic with period T'. Constructing an integrating factor
for Eq. (A.13) in the usual way, we see that

%{r(t) exp [/Ot Q(T)dT] } = exp [/Ot Q(T)d’]’]

and so

r(t) = r(0) exp{— /Ot Q(T)dT}

+exp [— /Ot Q(T)dr] /Ot exp [/: Q(r)dT] d€.

(A.14)

To have o(t +T) = o(t) we need r(t +T) = r(t) and this
requires

r(0) exp [— /OHT Q(T)dT]
" Q(T)dT] /0 o exp { /O ‘ Q(T)df} de
= r(0) exp [— /Ot Q(T)dT}

+exp [— /Ot Q(T)dr] /Ot exp [/: Q(T)dr] d.

Exploiting periodicity of Q(t), we have

+ exp [f
0

t+T

t+T T
Q(T)dT:/O Q(r)dr + Q(r)dr

0 T

T ¢
- / Q(r)dr +/ QT +7)dr
0 0
T ¢
~ [ Qwir+ [ amar
0 0
and so the condition for periodicity of r(t) becomes

r(0) exp [— /0 TQ(T)dT}

+exp[— /O ' Q(T)dT} /0 t+TeXp[ /0 fQ(T)dT]d&
—r(0) + /Ot exp [/Of Q(r)dr] de.

We also note that

/0 o exp [ /0 ‘ Q(T)dr} d¢
_ /OT exp [/OE Q(r)dT] de + /THT exp [/05 Q(T)df} d¢
T €

:A exp{ ; Q(T)dT}dﬁ

+ /THT exp [/OT Q(r)dr + /;Q(T)dﬂ dc .

(A.15)

We now take £ = T+ ( in the last integral, use periodicity
of Q(t) again, and deduce that

/0 o exp { /0 ‘ Q(T)dT} de
_ /OT exp [/05 Q(T)dT} de
+ exp [/OT Q(r)dr] /Ot exp [/;Q(T)dﬂ dc.

It can now be seen that all t-dependence cancels in Eq. (A.15)
and the periodicity condition reduces to

r(0) exp [— /OT Q(T)dT}
+ew[- [ " Q] / " ex| / " Q(rydr]ds = (0

and this determines r(0) uniquely:

) /OTeXpL/OEQ(T)dT}dg.
exp {/0 Q(T)d’r} -1

We can now recover the corresponding solution for o(t),
using Eqgs (A.12) and (A.14):

r(0) (A.16)

t

r! exp{ Q(T)dT:|

r(0) + /Ot exp [/05 Q(T)dT} de

where 7(0) is given by Eq. (A.16).

As a check on our analysis we can evaluate the mean
population ¢ by integrating the solution, and compare it
with what we found by direct integration of the original
differential equation. We find that

o(t) = (A.17)

To= /OT o(t)dt

=g 1 1og{1 + % /OT exp {/OE Q(T)dr] df}

and inserting the value of r(0) that we have determined,

we find that
1 (T
To= f/ Q(7)dr,
K Jo

so we recover the previously determined mean population
o=Q/r.

We now address the parameter restrictions that may
be needed for the analysis to be valid. To obtain a non-
negative, finite total population o(t), we require r(t) > 0
for all time. Since the solution we have constructed is
periodic, we need only pursue this matter for ¢ > 0. If we
examine Eq. (A.14), we see that 7(0) > 0 for all ¢ > 0 if



and only if r(0) > 0, and this requires the denominator in
Eq. (A.16) to be strictly positive, which in turn requires
that

T
/ Q(t)dt =TQ > 0.
0

A.5. When can o(t) oscillate faster than p(t)?
The proof of periodicity of o(t) used only the period-
icity of

Qt) = — e[p(t) — u(t)]* = (e8)"/?

and o(t) has the same period. Since we had established
earlier that there is a valid Gaussian solution C(z, t) for the
phenotype distribution with u(t + T) = p(t) when o(t +
T) = (1), it followed that Q(¢+T") = Q(t). However, since
it is [o(t) — pu(t)] 2, rather than ¢(t) — u(t), that appears in
the formula defining Q(t), we see that a sufficient condition
for Q(t +T/2) = Q(t), and hence for o(t +T/2) = o(t), is

p(t+T/2) — u(t+T/2) = —[p(t) — p(t)]

and invoking the assumption

p(t+T/2) = —p(1), (A.18)
the sufficient condition is that
w(t+T/2)+ u(t)=0. (A.19)

Using assumption (A.18) we see that
T
| exol2(es) 2 riptriar
0

T/2
/0 exp[2(e8) Y 7)o (7)dr

T
“
T/2

T/2
- / exp[2(e)/?7)p(r)dr

exp2(ef)/?r]po(r)dr

T/2
+ /0 exp[2(e8)/2(r + T/2)|o(r + T/2)dr

T/2

~{expl(e)T) - 1} [ expl2(et) A rlg(r)ar.
0

Setting a = 0 in our general solution for p(t) we now have

(1)

_ 2(eB)V/2 expl—2(e8)/21]
= exp2(eB) 2T - 1

1 2(eB)"/2 exp|—2(ef) /1] / exp[2(e8)/?7)p(r)dr

_ 2(ep)!/? exp[—2(e8) /1]
expl(eB)/2T] + 1

1 2(eB) " expl-2(eB) /1] / exp[2(e) /27 p(r)dr.

T
/O exp[2(e)/?r)p(r)dr

T/2
/0 exp[2(e)/?7)p(r)dr

10

It now follows that

p(t+1/2) 4 p(t)
2(e)1/2 exp[—2(eB)1/21]

T/2
—exp[—(eﬁ)l/zT]/O exp[2(6,8)1/27']<p(7')d7

t+1/2
bexpl-(e9)!21] [ expla(ed)!Arlelr)dr
0
t
—|—/ exp[2(eﬁ)l/27]gp(7')dr.
0
Next we exploit assumption (A.18) again:

t+T/2
/O exp[2(e)/?r)p(7)dr

T/2
/ exp[2(eB) /2 r]p(r)dr
0
t+T/2
/..

T/2
- / exp[2(eB) /27 (r)dr

exp2(ef)/?r]p(r)dr

+ / exp[?(eﬂ)1/2(7' +T/2)|p(r+T/2)dr
0
T/2
= /0 eXp[Z(eﬂ)l/QT]gp(T)dT

~ expl(e8)?T) / exp[2(e) /2 r](r)dr

and we now see that

p(t +T/2) + p(t)
2(eB)/? exp[—2(ef)"/2]

Thus the sufficient condition (A.19) is met if the assump-
tions @ = 0 and ¢(t + T/2) = —(t) are made.

=0.

B. Details of numerical solutions

We describe here the procedure for constructing nu-
merical solutions of the mathematical problem defined by
endowing (2.1)—(2.2) with the initial condition

Co

40,

C(l‘,O) =Co ]1(7L;L) (33),
and the Dirichlet boundary conditions
(=L, )=¢(L,-)=0.

The above conditions satisfy assumption (2.3) and have a
similar effect to assumption (2.4), replacing a significant
rate of death at all sufficiently large |x| by certain death
at one sufficiently large value of |z|.

We fix a time step At and set t;, = kAt. The method is
based on a time splitting scheme between the conservative
part and the reaction term, that is, the approximation



1 of ¢(tg,1) is computed from the approximation c* of
c(tg) in two steps:

ck 0%k
k+1/2 _ K
C / =Cc — At (O{% — 6552 ) (Bl)
and
L = P2 L At FH/2 R(x, o, Qk), (B.2)

where ¥ is the approximation of o(t;) and ¢* is the in-
tegral of ¢*. We next turn to the space discretisation
and we use a uniform grid with N points on the interval
[-L, L], with Az = 2L/N the space step. We approx-
imate c*(z;) and R(mi,gok, gk) by discrete values ¢ and
R; (gok, gk)7 and we recover ¢* through numerical integra-
tion. We solve Eq.(B.1) by using a second-order upwind
scheme for the advection term and a three points explicit
scheme for the diffusion term. Since we choose § small, the
explicit scheme is not penalising in terms of computational
time. For the reaction term, we use an implicit-explicit fi-
nite difference scheme [19], that is, we compute cf“ as
AL Ft1/2 1+ At Ri(¢", Qk)+
CTO I MR D)

Numerical computations are performed in MATLAB. We
select a uniform discretisation consisting of 600 points on
the interval [—L, L] with L = 2 as the spatial domain, and
the interval [0,20] as the time domain (time step At =
107°). Unless otherwise stated, we set T = 5, v = 200,
e =30, x=1and

27

5

o(t) := sin (wt), w

The values of the other parameters of the model are listed
below.

Figure 1: =0, = 0.5.

Figure 2: o« = 0, 8 = 0.5 (solid lines); « = 1, 8 = 0.5
(dashed lines); a = 2, 8 = 0.5 (dotted lines).

Figure 3: a = 0.1, 8 € [0.01; 1], € € [0.01; 100].
Figure 4(A): a € [0.01;10], 8 = 0.5, ¢ € [1;100].

Figure 4(B): « € [0.01;10], 8 € [0.01;1], € = 30.

Figure 5: o = 0.1, 8 € [0.01;1], v = 30, ¢ = 30, T €
[0.01;5].
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