4 research outputs found

    A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin

    Full text link
    One of the six predicted Proteus mirabilis autotransporters (ATs), ORF c2341, is predicted to contain a serine protease motif and was earlier identified as an immunogenic outer membrane protein in P. mirabilis . The 3.2 kb gene encodes a 117 kDa protein with a 58-amino-acid-long signal peptide, a 75-kDa-long N-terminal passenger domain and a 30-kDa-long C-terminal translocator. Affinity-purified 110 kDa AT exhibited chymotrypsin-like activity and hydrolysed N -Suc–Ala–Ala–Pro–Phe– p Na and N -Suc–Ala–Ala–Pro–Leu– p Na with a K M of 22 μM and 31 μM, respectively, under optimal pH of 8.5–9.0 in a Ca 2+ -dependent manner. Activity was inhibited by subtilase-specific inhibitors leupeptin and chymostatin. Both the cell-associated and purified form elicited cytopathic effects on cultured kidney and bladder epithelial cells. Substrate hydrolysis as well as cytotoxicity was associated with the passenger domain and was compromised upon mutation of any of the catalytic residues (Ser366, His147 and Asp533). At alkaline pH and optimal cell density, the AT also promoted autoaggregation of P. mirabilis and this function was independent of its protease activity. Cytotoxicity, autoaggregation and virulence were significantly reduced in an isogenic pta mutant of P. mirabilis . Proteus toxic agglutinin (Pta) represents a novel autotransported cytotoxin with no bacterial homologues that works optimally in the alkalinized urinary tract, a characteristic of urease-mediated urea hydrolysis during P. mirabilis infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73221/1/j.1365-2958.2008.06199.x.pd

    Vorapaxar in the secondary prevention of atherothrombotic events

    Get PDF
    Item does not contain fulltextBACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.)
    corecore