25 research outputs found

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Polymorphism: an evaluation of the potential risk to the quality of drug products from the FarmĂĄcia Popular Rede PrĂłpria

    Get PDF
    Polymorphism in solids is a common phenomenon in drugs, which can lead to compromised quality due to changes in their physicochemical properties, particularly solubility, and, therefore, reduce bioavailability. Herein, a bibliographic survey was performed based on key issues and studies related to polymorphism in active pharmaceutical ingredient (APIs) present in medications from the Farmácia Popular Rede Própria. Polymorphism must be controlled to prevent possible ineffective therapy and/or improper dosage. Few mandatory tests for the identification and control of polymorphism in medications are currently available, which can result in serious public health concerns

    Effects of Antiglaucoma Drugs on [ 32

    No full text

    A Cryptographic Solution for General Access Control

    No full text
    As one of the most popular information safeguarding mechanisms, access control is widely deployed in information systems. However, access control approach suffers from a tough problem, i.e. system administrators must be unconditionally trusted. Cryptographic substitutes have been developed to solve the above problem. In particular, hierarchical encryption, as an alternate solution of access control in a hierarchy, has been intensively studied. In this paper, we propose a cryptographic solution for general access control based on Chinese Remainder Theorem. Our solution has two categories: data based solution and key based solution. In contrast to the most recent hierarchical encryption system: Ray, Ray and Narasimhamurthi\u27s system [1], our solution is more efficient, secure and flexible. Moreover, we introduce an efficient mechanism for authorization alterations. This paper ends with a set of experimental results that support our research
    corecore