30 research outputs found

    Genomic profiling of collecting duct renal carcinoma

    Get PDF

    NFX1, Its Isoforms and Roles in Biology, Disease and Cancer

    Get PDF
    In 1989, two NFX1 protein products were identified as nuclear proteins with the ability to bind to X-box cis-elements. Since that publication, the NFX1 gene and its homologs have been identified, from yeast to humans. This review article summarizes what is known about the NFX1 gene across species. We describe the gene and protein motifs of NFX1 homologs and their functions in cellular biology, then turn to NFX1 in human biology and disease development. In that, we focus on more recent literature about NFX1 and its two splice variants protein products (NFX1-91 and NFX1-123) that are expressed in epithelial cells. We describe new evidence of conserved protein motifs, direct and indirect gene expression regulation, and critical protein-protein interactions. Finally, we stress the emerging roles of these NFX1 splice variants in high-risk human papillomavirus-associated cancers, and the increased expression of the longer splice variant, NFX1-123, found in these cancers

    Phase I study of the mTOR inhibitor everolimus in combination with the histone deacetylase inhibitor panobinostat in patients with advanced clear cell renal cell carcinoma

    Get PDF
    Background: Preclinical studies suggested synergistic anti-tumor activity when pairing mTOR inhibitors with histone deacetylase (HDAC) inhibitors. We completed a phase I, dose-finding trial for the mTOR inhibitor everolimus combined with the HDAC inhibitor panobinostat in advanced clear cell renal cell carcinoma (ccRCC) patients. We additionally investigated expression of microRNA 605 (miR-605) in serum samples obtained from trial participants. Patients and Methods: Twenty-one patients completed our single institution, non-randomized, open-label, dose-escalation phase 1 trial. miR-605 levels were measured at cycle 1/day 1 (C1D1) and C2D1. Delta Ct method was utilized to evaluate miR-605 expression using U6B as an endogenous control. Results: There were 3 dosing-limiting toxicities (DLTs): grade 4 thrombocytopenia (n = 1), grade 3 thrombocytopenia (n = 1), and grade 3 neutropenia (n = 1). Everolimus 5 mg PO daily and panobinostat 10 mg PO 3 times weekly (weeks 1 and 2) given in 21-day cycles was the recommended phase II dosing based on their maximum tolerated dose. The 6-month progression-free survival was 31% with a median of 4.1 months (95% confidence internal; 2.0-7.1). There was higher baseline expression of miR-605 in patients with progressive disease (PD) vs those with stable disease (SD) (p = 0.0112). PD patients' miR-605 levels decreased after the 1st cycle (p = 0.0245), whereas SD patients' miR-605 levels increased (p = 0.0179). Conclusion: A safe and tolerable dosing regimen was established for combination everolimus/panobinostat therapy with myelosuppression as the major DLT. This therapeutic pairing did not appear to improve clinical outcomes in our group of patients with advanced ccRCC. There was differential expression of miR-605 that correlated with treatment response

    HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma

    Get PDF
    Indexación: Web of ScienceBackground: Class I histone deacetylases (HDACs) have been reported to be overexpressed in clear cell renal cell carcinoma (ccRCC), whereas the expression of class II HDACs is unknown. Methods: Four isogenic cell lines C2/C2VHL and 786-O/786-OVHL with differential VHL expression are used in our studies. Cobalt chloride is used to mimic hypoxia in vitro. HIF-2 alpha knockdowns in C2 and 786-O cells is used to evaluate the effect on HDAC 1 expression and activity. Invasion and migration assays are used to investigate the role of HDAC 1 and HDAC 6 expression in ccRCC cells. Comparisons are made between experimental groups using the paired T-test, the two-sample Student's T-test or one-way ANOVA, as appropriate. ccRCC and the TCGA dataset are used to observe the clinical correlation between HDAC 1 and HDAC 6 overexpression and overall and progression free survival. Results: Our analysis of tumor and matched non-tumor tissues from radical nephrectomies showed overexpression of class I and II HDACs (HDAC6 only in a subset of patients). In vitro, both HDAC1 and HDAC6 over-expression increased cell invasion and motility, respectively, in ccRCC cells. HDAC1 regulated invasiveness by increasing matrix metalloproteinase (MMP) expression. Furthermore, hypoxia stimulation in VHL-reconstituted cell lines increased HIF isoforms and HDAC1 expression. Presence of hypoxia response elements in the HDAC1 promoter along with chromatin immunoprecipitation data suggests that HIF-2 alpha is a transcriptional regulator of HDAC1 gene. Conversely, HDAC6 and estrogen receptor alpha (ER alpha) were co-localized in cytoplasm of ccRCC cells and HDAC6 enhanced cell motility by decreasing acetylated alpha-tubulin expression, and this biological effect was attenuated by either biochemical or pharmacological inhibition. Finally, analysis of human ccRCC specimens revealed positive correlation between HIF isoforms and HDAC. HDAC1 mRNA upregulation was associated with worse overall survival in the TCGA dataset. Conclusions: Taking together, these results suggest that HDAC1 and HDAC6 may play a role in ccRCC biology and could represent rational therapeutic targets.http://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2604-

    Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma

    Get PDF
    Purpose: Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. Experimental Design: We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. Results: The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3–tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. Conclusions: These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3–tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3–tRCC

    Genome wide DNA methylation landscape reveals glioblastoma’s influence on epigenetic changes in tumor infiltrating CD4+ T cells

    Get PDF
    CD4+ helper T (Th) cells play a critical role in shaping anti-tumor immunity by virtue of their ability to differentiate into multiple lineages in response to environmental cues. Various CD4+ lineages can orchestrate a broad range of effector activities during the initiation, expansion, and memory phase of endogenous anti-tumor immune response. In this clinical corelative study, we found that Glioblastoma (GBM) induces multi- and mixed-lineage immune response in the tumor microenvironment. Whole-genome bisulfite sequencing of tumor infiltrating and blood CD4+ T-cell from GBM patients showed 13571 differentially methylated regions and a distinct methylation pattern of methylation of tumor infiltrating CD4+ T-cells with significant inter-patient variability. The methylation changes also resulted in transcriptomic changes with 341 differentially expressed genes in CD4+ tumor infiltrating T-cells compared to blood. Analysis of specific genes involved in CD4+ differentiation and function revealed differential methylation status of TBX21, GATA3, RORC, FOXP3, IL10 and IFNG in tumor CD4+ T-cells. Analysis of lineage specific genes revealed differential methylation and gene expression in tumor CD4+ T-cells. Interestingly, we observed dysregulation of several ligands of T cell function genes in GBM tissue corresponding to the T-cell receptors that were dysregulated in tumor infiltrating CD4+ T-cells. Our results suggest that GBM might induce epigenetic alterations in tumor infiltrating CD4+ T-cells there by influencing anti-tumor immune response by manipulating differentiation and function of tumor infiltrating CD4+ T-cells. Thus, further research is warranted to understand the role of tumor induced epigenetic modification of tumor infiltrating T-cells to develop effective anti-GBM immunotherapy

    EZH2 modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming

    Get PDF
    Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represent a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft (PDX) model that is intrinsically resistant to the RTKI sunitinib but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its anti-angiogenic and anti-metastatic activity but lost its direct anti-tumor effects due to kinome reprogramming, which resulted in suppression of pro- apoptotic and cell cycle regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTK, restoring the anti-tumor effects of sunitnib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease.This research was funded by Roswell Park Cancer Institute’s Cancer Center Support Grant from National Cancer Institute, NIH P30CA016056 (RP) and a generous donation by Richard and Deidre Turner (RP). This investigation was conducted in-part in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR020128-01 from the National Center for Research Resources, National Institutes of Health

    Post-Transcriptional Gene Regulation by HPV 16E6 and Its Host Protein Partners

    No full text
    Human papillomavirus type 16 (HPV 16) is the most common oncogenic type of HPV in cervical, anogenital, and head and neck cancers, making HPV 16 an important high-risk HPV (HR HPV) type. To create an environment permissible for viral maintenance and growth and to initiate and support oncogenesis, the HR HPV protein E6 functions to dysregulate normal cellular processes. HR HPV type 16 E6 (16E6) has previously been shown to bind cellular proteins in order to transcriptionally activate genes and to target regulatory proteins for degradation. We have identified an additional functional model for 16E6. First, 16E6 binds to cellular RNA processing and binding proteins, specifically cytoplasmic poly(A) binding proteins (PABPCs) and NFX1-123. Then, 16E6 hijacks those proteins&rsquo; functions to post-transcriptionally regulate cellular immortalization, growth, and differentiation genes and pathways in keratinocytes. In this review, we have highlighted studies that introduce this new model of 16E6 functionality. Understanding ways in which HR HPV dysregulates cellular processes&mdash;particularly at the level of post-transcriptional gene regulation&mdash;presents new ways to consider mechanisms underlying DNA tumor virus function and new areas for therapeutic target development in HPV-associated cancers

    Non-Coding Micro RNAs and Hypoxia-Inducible Factors Are Selenium Targets for Development of a Mechanism-Based Combination Strategy in Clear-Cell Renal Cell Carcinoma—Bench-to-Bedside Therapy

    Get PDF
    Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel&#8315;Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1&#945; and 2&#945; (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies

    Genes Regulated by HPV 16 E6 and High Expression of NFX1-123 in Cervical Cancers

    Get PDF
    Purpose High-risk human papillomaviruses (HR HPV) cause cervical cancer, and in these cancers, HPV type 16 is the most common HR type. The HR viral oncogenes E6 and E7 partner with cellular proteins to drive cancer and modulate immune pathways; previously, we demonstrated in keratinocytes that HPV 16 E6 and high expression of the endogenous host protein partner NFX1-123 led to the increased expression of multiple genes, including Notch1, secretory leukocyte peptidase inhibitor (SLPI), and retinoic acid early transcript 1G (RAET1G). The present study was conducted to determine if NFX1-123 was highly expressed in cervical cancer and if genes increased by NFX1-123 and 16E6 in keratinocytes were also increased in cervical cancers. Materials and Methods The Cancer Genome Atlas (TCGA) database and The Human Protein Atlas database were used to compare relative mRNA and protein gene expression, respectively, in the normal cervix and cervical cancers. Formalin-fixed paraffin-embedded (FFPE) normal cervix and HPV 16 positive cervical cancer samples were analyzed for relative protein expression by immunohistochemical staining. Protein expression of a subset of regulated genes was quantified by Western blot of HPV positive and negative cell lines. Results Immunohistochemical staining of HPV 16 positive cervical dysplasias and cancers revealed high NFX1-123, Ki67, and Notch1 expression. NFX1 and NFX1L1 mRNA levels were increased in cervical cancers compared to normal cervix in the TCGA database. Fourteen genes previously identified as upregulated in keratinocytes with 16E6 and overexpressed NFX1-123 also had high mRNA expression and selected genes had high protein expression in cervical cancers and cell lines. Conclusion In cervical cancer, NFX1-123 is highly expressed, and 16E6 and NFX1-123 together alter the expression of a wide set of genes. The involvement of these genes in cell proliferation, differentiation, invasion, and metastasis provides further insight into potential ways that HR HPVs promote cancer initiation and maintenance
    corecore