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Abstract

Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represent a major 

hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports 

suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate 

alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many 

cancers including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and 

characterized a spontaneously metastatic, patient-derived xenograft (PDX) model that is 

intrinsically resistant to the RTKI sunitinib but not to the VEGF therapeutic antibody 

bevacizumab. Sunitinib maintained its anti-angiogenic and anti-metastatic activity but lost its 

direct anti-tumor effects due to kinome reprogramming, which resulted in suppression of pro-

apoptotic and cell cycle regulatory target genes. Modulating EZH2 expression or activity 

suppressed phosphorylation of certain RTK, restoring the anti-tumor effects of sunitnib in models 

of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational 

target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for 

RTKi response in this disease.
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INTRODUCTION

Receptor tyrosine kinase inhibitors (RTKi) such as sunitinib are presently used as standard 

of care in patients with recurrent metastatic renal cell carcinoma but durable responses are 

not common (1). (2). The clinical benefit of RTKi in RCC is thought to be mediated 

primarily by their anti-angiogenic effect, especially in vascular endothelial growth factor 

(VEGF) –driven tumors such as ccRCC. The mechanism(s) by which sunitinib harnesses 

angiogenesis is by targeting several receptor tyrosine kinases including VEGF receptor 2 

(VEGFR2) and platelet derived growth factor receptor (PDGFR). However, recent reports 

from our group and others have suggested that anti-tumor effect of RTKi, such as sunitinib, 

may be in part independent of their anti-angiogenic effect (3–5).

Induction of multiple kinases, such as FAK, SCR, MET, FGFR2, EGFR, IGF-1R and 

ERBB2 has been reported to be associated with resistance to RTKi due to either 

transcriptional activation or post-translational upregulation (6–8). Induced kinome 

reprogramming can occur via deregulation of feedback loops and cross-talk of regulatory 

nodes, which in turn fosters the ability of cells to bypass the drug inhibitory effect leading to 

resistance (9). The kinome network can be affected by several factors including acquired 

mutations, stromal interactions and epigenetic modifications (10). However, there are no 

reports on the potential role that specific epigenetic modifications may play in 

reprogramming the kinome following RTKi.
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Epigenetic modifications have been implicated in cancer progression and are potential 

drivers of drug resistance (11–16). The overexpression of EZH2 has been reported in 

numerous cancer types including advanced renal cell carcinoma (17–19), suggesting its role 

in modulating several cellular processes involved in cell survival and drug resistance (20–

21). Inhibition of EZH2 has resulted in the attenuation of drug resistance in tumor and stem 

cells by suppressing its repressive function on target tumor suppressor genes (22). However, 

little is known about the epigenetic mechanisms of resistance to RTKi in RCC. We have 

recently reported that sunitinib resistance may be transient and be reversed by dose 

escalation both in selected RCC patients and tumor models, suggesting a dynamic tumor 

adaptation to RTKi which is likely driven by epigenetic modifications (3). The acquired 

resistance in the preclinical models was associated with the dynamic/reversible changes of 

EZH2 expression at the time of response and resistance to sunitinib. Thus, the onset of 

acquired resistance to sunitinib and progression may be in part due to alterations of EZH2 

profiles of these tumors that provide a selective advantage to evade targeted kinase 

inhibition.

The approval of RTKifor advanced RCC has revolutionized the clinical treatment of this 

disease, though therapeutic responses are in general short lived. Understanding the 

mechanisms of resistance through the establishment of patient derived xenograft (PDX) 

models has improved our understanding of target predictions and drug response (23–28). 

Herein, we report the role of EZH2 in adaptive sunitinib induced kinome reprogramming in 

a novel, clinically relevant, metastatic PDX model of ccRCC, RP-R-02LM. Utilizing also 

human RCC cell line (acquired resistance) we report that sunitinib resistance is associated 

with increased EZH2 expression and induces global phosphorylation of kinases in both 

serine and tyrosine residues. Furthermore, molecular and pharmacological inhibition of 

EZH2 in both cells lines and PDX, respectively, attenuated the global kinase 

phosphorylation, increased activation of tumor suppressors and consequently re-established 

sensitivity to sunitinib. Taken together, these results suggest that pharmacological targeting 

of EZH2 is a promising strategy to overcome RTKi resistance in RCC.

Materials and Methods

Xenograft studies

Xenograft models—RP-R-01 and RP-R-02 are patient-derived xenograft (PDX) of clear 

cell renal cell carcinoma (ccRCC) models previously described (3,29) RP-R-02LM is a 

metastatic ccRCC that spontaneously metastasizes to the lungs from primary tumors 

implanted either subcutaneously under the skin or orthotopically in the kidney sub-capsule.

Tumor implantation—All in vivo experiments were approved and performed in strict 

accordance with the guidelines of the Institutional Animal care and use committee (IACUC) 

at Roswell Park Cancer Institute, Buffalo, New York and IACUC Indiana University, 

Indianapolis IN. Six week old homozygous ICR Severe Combined Immune-deficient (SCID) 

female mice were housed in a sterile, pathogen-free facility and maintained in a temperature 

controlled room under a 12 hour light/dark schedule with water and food ad libitum. To 

generate the metastatic model, RP-R-02 tumors were implanted ectopically into the prostate 

Adelaiye-Ogala et al. Page 3

Cancer Res. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of mice to select for a metastatic population. Lung metastasis developed were collected and 

re-implanted either subcutaneously under the skin flank or orthotopically in the kidney sub-

capsule to select for pure metastatic population. For drug treatment studies, RP-R-02LM 

viable tumors were selected and dissected into ~1mm2 tumor pieces and implanted either 

subcutaneously or orthotopically into mice. All mice were operated under sedation with 

oxygen, isoflurane and buprenorphine. When tumors were established and reached 50 mm2 

(subcutaneous implantation), were palpable (orthotopic implantation) or metastases were 

detected by imaging (micro CT), mice were randomly grouped and placed in either control 

group or treatment groups (n=5–20).

Drug treatment schedule—For the endpoint studies using sunitinib, bevacizumab or 

axitinib, mice implanted with RP-R-02LM subcutaneously (n=5–10/group) were randomly 

grouped into either control or treatment groups. Mice in the sunitinib treatment arm were 

treated with 40mg/kg 5days on 2 days off, mice in the bevacizumab treatment arm were 

treated with 10mg/kg two times a week and mice in the axitinib treatment arm were treated 

with 36mg/kg two times a week. For survival studies using sunitinib, we implanted RP-

R-02LM tumor pieces (~1mm2) into the kidney sub-capsule of 20 mice. One month after 

implantation, mice bearing tumors were randomly grouped into control and sunitinib 

treatment groups. Mice in treatment groups were treated with a dose of 40 mg/kg (sunitinib 

free base) (LA Laboratories, Woburn MA) 5 days on, 2 days off by oral gavage. In a second 

set of experiments, mice implanted with RP-R-02LM tumor pieces were grouped into 

control, sunitinib treated group, EPZ011989 (Epizyme Incorporation, Cambridge MA) 

treated group, or a combination group (n= 5/group). Mice in the sunitinib group were treated 

with 40 mg/kg sunitinib 5 days on/2 days off; mice in EPZ011989 treated group received 

500 mg/kg EPZ011989 2x/day, 5 days on/2 days off; and the combination group received 

both drugs at the same dose and same treatment time.

Tumor and body weight assessment—Tumor size and body weights were assessed 

and recorded once a week. For tumors implanted subcutaneously, tumor size was measured 

once a week by caliper measurement of two diameters of the tumor (L × W = mm2) and 

reported as tumor volume ((L X W2)/2 = mm3). Body weights were assessed using a 

weighing scale and recorded in grams. Endpoint tumor weights were assessed using a weigh 

scale and recorded in grams.

Blood and tissue collection

Tissue and blood were collected under aseptic conditions. 1 ml of blood was collected by 

cardiac bleeds (terminal) at the end of the experiment. Serum and plasma were separated and 

aliquots were stored at −80 °C for further analysis. Tumor tissues were excised, weighed and 

cut into sections. Sections were snap-frozen and stored in -80 °C, fixed in 10% buffered 

formalin, or zinc for histopathology and saved in trizol for RNA analysis.

Imaging studies

Magnetic resonance imaging (MRI)—Experimental MRI examinations were performed 

as previously described (30). In brief, experiments were conducted in a 4.7T/33-cm 

horizontal bore magnet (GE NMR Instruments, Fremont, CA) equipped with AVANCE 
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digital electronics (Bruker Biospec, Paravision 3.0.2; Bruker Medical Inc., Billerica, MA), a 

removable gradient coil insert (G060) generating a maximum field strength of 950 mT/m 

and a custom-designed 35-mm RF transmit receive coil. Animals were secured in a form-

fitted, MR compatible sled (Dazai Research Instruments, Toronto, Canada) equipped with 

temperature and respiratory monitoring sensors. Animal body temperature was maintained at 

37°C during imaging using an air heater system (SA Instruments Inc., Stony Brook, NY), 

and automatic temperature feedback was initiated through thermocouples in the sled. A 

phantom containing 0.15 mM gadopentetate dimeglumine (Gd-DTPA; Magnevist, Berlex 

Laboratories, Wayne, NJ) was used for monitoring changes in noise and system 

performance. Preliminary localizer images were acquired for subsequent slice prescription. 

Tumor volumes were calculated from multi-slice T2-weighted (T2W) spin echo images with 

the following parameters: Field of view (FOV) = 3.20 × 3.20 cm, matrix (MTX) = 256 × 

192, slice thickness = 1 mm, NEX = 4, TR = 2500 ms, TEeff = 41.0 ms, RARE/Echoes= 

8/8. Following image acquisition, raw image sets were transferred to a processing 

workstation and converted into Analyze™ format (AnalyzeDirect, version 7.0; Overland 

Park, KS). All post processing of imaging data was carried out in Analyze™ and MATLAB. 

A region of interest (ROI) was manually traced around the entire tumor area on each tumor 

slice. Tumor volume was calculated by measuring the cross sectional area on each slice and 

multiplying their sum by the slice thickness.

Micro Computed Tomography (CT) imaging—Respiratory gated μCT were performed 

at 33.63 μm on a Skyscan 1176 (Bruker, Billerica, MA) using the following scan parameters: 

80 kV tube voltage; 313 mA tube current; 0.5 mm Al filter; 0.9° rotation step; no frame 

averaging, 4×4 binning, 32 horizontal pixel overlaps. Animals were induced and maintained 

with 4–5% and 1–3% isoflurane gas, balance medical oxygen, delivered at 2 mL/min, 

respectively. Animals were transferred to a heated carbon fiber scanning bed, landmarked, 

and scout scans performed to permit scan prescription of thoracic region in 2 beds. Images 

were reconstructed using vendor supplied filtered back-projection algorithm, using a 

Hamming filter (α=0.54) with a Nyquist relative cutoff frequency of 100. Post-acquisition, 

DICOM images were imported into Analyze™ (AnalyzeDirect, version 12.0; Overland 

Park, KS), registered using normalized entropy methods (31) and intensity normalized over 

the interval [0.0, 1.0]. Images were then segmented using constrained region growing 

approaches, where lung air spaces and soft tissues were defined to have values ranges of 

[0.0, 0.1] and [0.11, 1.0] respectively. To minimize the impact of tracheal tissue 

contamination on total lung volume, trachea objects were digitally removed, and object 

maps quantified according to the following general equation:

Where V, i, j, k, l, a, b, c, OMap, and μ are the volume of the “i’th” region, “j’th” object map 

index, “k’th” object map index, “l’th” object map index, “a” total number of row voxels, “b” 
total number of column voxels, “c” total number of slices, object map, and voxel dimension 
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in millimeters. Determination of lung nodules was then assessed as the reduction in lung 

volume for each subject with time.

In vitro assays

Cell lines—786-0 and UMRC2 cell lines from ATCC was maintained and cultured in the 

appropriate media supplemented with 10% FBS and 1% penicillin and streptomycin. The 

786-0R (resistant cell line) was generated from the 786-0 parental line adopting a drug 

escalation scheme. 786-0 cells were exposed to an initial concentration of 2μM which was 

the concentration at which 50% of cell death was observed. When cells became resistant at 

2μM, drug concentration was gradually increased by 0.5μM increments with every resistant 

cycle. Cells were considered resistant at ≥5μM sunitinib. UMRC2R cells were established 

using the same method. The period for generated resistant cells form the parental line was 

approximately 4 months. The IC50 at 48-hour treatment of the 786-0 and UMRC2 resistant 

cells was 19.9μM and 20μM, respectively. All cells are routinely tested and checked for the 

absence of mycoplasma. Cells were also checked to ensure that they maintained human 

origin by detecting the Alu sequence via PCR.

MTT and Crystal Violet Assay—786-0 and 786-0R cells were plated in six-well plated 

for 24 hours and treated with either DMSO (vehicle control) varying concentrations of 

sunitinib or a single concentration of sunitinib in combination with EPZ011989 (EZH2 

inhibitor) and use MTT assay (Cayman) or crystal violet assay (Sigma) to evaluate the cells 

growth after 24, 48, 72 and 96 hours of treatment and absorbance read using s spectrometer 

(xMarks Spectrometer, Bio-Rad).

Immunohistochemistry and immunofluorescence staining

Tissue specimens were fixed for 24 hr, paraffin embedded and sectioned (4μm). Sections 

were de-paraffinized and rehydrated through graded alcohol washes. Antigen unmasking 

was achieved by boiling slides in either sodium citrate buffer (pH=6.0) or EDTA. For 

immunohistochemistry staining (IHC), sections were further incubated in hydrogen peroxide 

to reduce endogenous activity. To examine the expressions of our proteins of interest, tissue 

sections were blocked with 2.5% horse serum (Vector Laboratories) and incubated overnight 

in primary antibodies against Ki67 (1:500, Thermo Fisher), E-cadherin (1:1000, Cell 

Signaling), EZH2 (1:1000, Cell Signaling), H3K27me3 (1:1000, Cell Signaling) and CD31 

(1:100, Dianova). Following primary incubation, tissue sections were incubated in 

horseradish-conjugated anti-rabbit or anti-rat antibody according to manufacturer’s protocol 

(Vector Laboratories) followed by enzymatic development in diaminobenzidine (DAB) and 

counter stained in hemotoxyline. Section were dehydrated and mounted with cytoseal 60 

(Thermo Scientific). For immunofluorescence staining (IF), sections were blocked with 5% 

BSA (Sigma), co-stained with EZH2 and either E-cadherin (1:500; Cell Signaling), 

pTyrosine (1:400; BioVision), pSerine (1:100), pAKT (1:400, Cell Signaling) or pFAK 

(1:500; Cell Signaling) and incubated overnight at 4°C. Following primary incubation, 

sections were incubated with either Alexa Fluor or FITC fluorochrome conjugated anti-

rabbit (ThermoFisher) or anti-mouse (1:400; ThermoFisher) antibody at room temperature 

in a humid light-tight box. Afterwards, slides were counter stained with DABI and mounted 

with vectorshield mounting medium (Vector laboratories). Stained sections were analyzed 
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either under bright field (IHC) or under appropriate fluorescence wavelength (IF) using the 

EVOS FL cell imaging microscope (Life Technology) and Leica Confocal microscope 

(Leica). The number of positive cells was determined in a blinded fashion by analyzing four 

random 20x fields per tissue and quantified using Image J software.

ChIP-sequencing

ChIP was performed as previously reported (32) using 1% formaldehyde fixing and 

antibodies to EZH2 (5246, lot 7, Cell Signaling Technology) or H3K27me3 (9733, lot 8, 

Cell Signaling Technology). For sequencing, purified ChIP DNA pooled from at least three 

replicates was re-sheared to <150 bp in a Diagenode Bioruptor. Libraries were prepared by 

Truseq sample preparation (Illumina). Libraries were sequenced with a NextSeq 500 

(Illumina). Sequencing reads from ChIP and input controls were aligned to the human 

genome (hg19) and bound regions identified using Useq (33).

RNA-sequencing

For RNA sequencing and analysis, tumor tissues and cells were collected to extract total 

RNA including small RNA using AllPrep DNA/RNA/miRNA universal kit (Qiagen Inc.) 

according to the manufacturer’s protocol. RNA-seq data were de-multiplexed and aligned 

against the human genome (hg19) using the TopHat alignment tool. The resulting file was 

aligned to BAM formatted sequence alignment map utilized by the cufflinks program to 

estimate transcript abundance. Cufflinks generates FPKM (Fragments per Kilobase of exon 

per Million fragments mapped) values for every transcript allowing comparisons between 

samples. Differential expressed transcripts were then identified between untreated and 

treated samples with Cuffdiff. Gene Set Enrichment Analysis using Hallmark and 

Oncogenic Signatures was performed with a pre-ranked gene list from the RNA-sequencing 

differential analysis. The genes were ranked based on the square root of the sum of squares 

for the log2 (fold-change) and the magnitude of the difference between the fold changes 

under the two analyzed conditions. A weighting factor was multiplied with the ranking score 

if the treatment returned the gene toward the expression under the normal condition. For 

microRNA sequencing analysis, Illumina sequencing reads were de-multiplexed trimmed for 

adaptor sequence, and aligned to the human genome with BowTie. The aligned reads were 

then be mapped to miRBase and annotated miRNAs tabulated. Differential expressed 

miRNA was determined using the DESeq R package with parametric normalization at FDR 

< 10%.

Quantitative RT-PCR

Quantitative RT-PCR (qRT-PCR) was performed utilizing EZH2, E-cadherin, SETD2, 

ALDH1A, HIF2a, E2F1, N-Cadherin, ZEB, VASH1, SNAIL and GAPDH human specific 

primers (IDT Technologies, Sequence in Supplemental Table 1). The denaturation step was 

carried out at 95°C for 10 seconds; the annealing step was carried out at 58°C for 30 

seconds, and extension step at 72°C for 1minute using the applied Biosystems 7900HT fast 

real-time PCR system (Applied Biosystems).
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Time Correlated Single Photon Counting (TCSPC)-Fluorescence Lifetime Imaging (FLIM) of 
peptide biosensor phosphorylation

For peptide synthesis the experiments were performed as previously described (34). 786-0 

and 786-0R cells were plated on cover slips in twelve-well plates for 12 hours and treated 

with sunitinib or DMSO for 24 hours. Afterwards, wells were washed gently 3 times with 

PBS and incubated with the peptide bio-sensors of interest p-VEGF-R, p-AKT, p-SCR, and 

p-FAK. After incubation of live cells with multiplex peptide sensors, cells were imaged 

using Time Correlated Single Photon Counting (TCSPC)-Fluorescence Lifetime Imaging 

(FLIM) to detect multiple kinase phosphorylation activity. Quantitative analysis was 

performed using photon decay collected from TCSPC-FLIM and fitted with multi-

exponential model employing Levenberg-Marquardt algorithm to construct lifetime 

histogram and FLIM map.

Immunoblotting

Whole cell protein extracts from tissue and cell were denatured, separated on SDS-PAGE 

gels and transferred to nitrocellulose membranes. After blocking in 5% enhanced blocking 

agent (GE) in Tris-buffered saline–Tween, membranes were probed overnight at 4°C with 

the following primary antibodies: EZH2 (1:1000 dilution; cell signaling, CA USA), E-

cadherin and B-Actin (1:1000, Santa Cruz). After incubation with the appropriate secondary 

antibody, results were detected using Western Lightning Chemiluminescence Reagent Plus 

according to the manufacturer’s instructions (ThermoFisher Scientific) and captured on film. 

Quantitative measurements of Western blot analysis were performed using ImageJ and 

Graph-Pad software (Prism 7).

Phospho RTK array

Phosphorylation levels of multiple receptor tyrosine kinases (RTKs) were examined using 

the Proteome Profiler Human Phospho-RTK array kit (ARY001B; R&D Systems) following 

manufacturer’s guidelines.

Reverse phase protein array (RPPA)

Reverse Phase Protein Array (RPPA) was performed for 12 RP-R-01 PDX tumors in this 

order; control (n=3), sunitinib sensitive period (n=3) and sunitinib resistant period (n=3). 

Slides were stained using antibodies as listed (https://www.mdanderson.org/education-and-

research/resources-forprofessionals/scientific-resources/core-facilities-and-services/

functional-proteomics-rppa-core/index.html) and relative protein levels were determined by 

fitting each dilution curve with a logistic model (‘Supercurve Fitting; http://

bioinformatics.mdanderson.org/OOMPA), heat map and statistical analysis was generated 

using Partek Genomic Suit software (Partek Inc.).

Phosphoproteomic mass spectroscopy

Cells from sunitinib sensitive and resistant cell lines were lysates and proteins denatured in 

0.1% RapiGest (Waters) and further reduced with 5 mM dithiothreitol for 30 min at 50°C. 

Afterwards, denatured proteins were alkylated in 15 mM iodoacetamide for 1 h in the dark 

and then digested with proteomics grade trypsin at a 1∶100 ratio overnight at 37°C. The pH 
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was adjusted below 3 and the sample was incubated for 45 min at 37°C. Samples were 

centrifuged at 16,000 × g to remove RapiGest and the supernatant was collected. Enrichment 

of phospho-peptide, mass spectrometric data acquisition and data analysis are previously 

described (35).

Clinical specimens and tissue microarray (TMA)

Tumor specimens from 101 ccRCC patients were embedded in paraffin, and established two 

TMA were provided by the clinical data network at Roswell Park Cancer Institute (RPCI), 

Buffalo New York and the Indiana University (IU) Simon Cancer Center Tissue Bank, 

Indianapolis, Indiana. Treatments after nephrectomy include tyrosine kinase inhibitor, VEGF 

blocker or mTORC inhibitors. For the overall survival, 76 metastatic (RPCI) and 25 primary 

(IU) tumors were analyzed. For the RTKi specific survival, 14 metastatic (RPCI) and 19 

primary (IU) tumors from patients who received either sunitinib or pazopanib were 

analyzed. Slides stained for EZH2 (1:500; Cell Signaling) were analyzed by two 

pathologists and generated H-scores were used to define EZH2 status.

Statistical analysis

Data analyses are expressed as the mean ± standard error of mean (SEM). Statistical 

significance where appropriate was evaluated using a two-tailed student t test when 

comparing two groups or by one-way analysis of variance (ANOVA) using the student-

Newman Keuls post-test for multiple comparison. A pValue < 0.05 was considered 

significant; *p <0.05, **p < 0.01, ***p <0.001, ns= not significant. Statistical analyses were 

done by GraphPad software.

RESULTS

Establishment and characterization of a novel metastatic ccRCC PDX model

To establish a metastatic ccRCC PDX model, we ectopically implanted tumor pieces from 

the PDX model RP-R-02 (3,34) into the anterior prostate of ICR SCID mice based on our 

prior experience with prostate cancer PDX that metastasize to the lungs at high frequency 

following intra-prostatic implantation (data not shown). All mice implanted with the tumors 

developed lung metastases four months post tumor implantation. Thus, we passaged the 

tumors from the lungs into a new set of mice. The newly established metastatic PDX model 

was named RP-R02LM. Surprisingly, RP-R02LM formed spontaneous lung metastases 

(Figs. 1A, B and Supplemental Fig. 1A) irrespective of the site of tumor implantation 

(subcutaneous or renal capsule). RP-R02LM tumors at the primary site, as well as the 

metastatic site, maintained the clear cell phenotype after several passages with a high 

incidence (>95%) of spontaneous lung metastases at every passage (Fig. 1C, D). In addition, 

PCR confirmed the presence of human Alu sequence, indicating that the tumors were human 

even though they are passaged in mice (Fig. 1E). The growth rate of RP-R-02LM was faster 

(100mm2 at day 31) than the parental RP-R-02 (100mm2 at day 49) (Supplemental Fig. 1B). 

Non-invasive MRI showed that metastatic burden was independent of primary tumor volume 

in mice bearing orthotopic RP-R-02LM (Supplemental Fig. 1C), suggesting that tumor 

shedding may occur early. In this model we observed a significant increase in EZH2, 
SETD2, ALDH1A1, E2F-1 and Snail1 expression. Evidence of epithelial-to-mesenchymal 
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transition (EMT) was also observed with increase in N-cadherin, ZEB1 and HIF2a levels 

and decrease in VASH1 and E-cadherin expression in RP-R-02LM compared to RP-R-02 

(Fig. 1F). Immunofluorescence co-staining analysis of E-cadherin-EZH2 indicated a 

decrease in E-cadherin and an increase in EZH2 in the metastatic model RP-R-02LM, 

compared to the parental line RP-R-02 (Fig. 1G, Supplemental Fig. 1D).

RTKI induced resistance is associated with loss of anti-tumor effect but persistent anti-
angiogenic and anti-metastatic activity

We have previously reported that acquired resistance to sunitinib can be transient and 

reversible both in preclinical and clinical studies of ccRCC (3). Thus, we wanted to assess 

the anti-tumor effect of sunitinib in our metastatic model. To our surprise, RP-R-02LM 

grown subcutaneously was intrinsically resistant to sunitinib (Fig. 2A) in contrast with the 

significant efficacy of sunitinib in the RP-R-02 parental model (3). However, when we 

investigated the effect of sunitinib on overall survival, mice treated with sunitinib had a 

survival benefit compared to control mice (Fig. 2B). Macroscopic and microscopic 

evaluations both indicated that mice following sunitinib treatment had a significant reduction 

of lung metastatic burden compared to the control group (Supplemental Fig. 2A). 

Interestingly, a close examination of the tumor vasculature showed a significant decrease in 

blood vessel density following sunitinib treatment (Supplemental Fig. 2B), although the 

percentage of proliferating cells did not change compared to the control. Similar results were 

observed in mice treated with axitinib, another RTKi approved for RCC patients (Fig. 2C, 

Supplemental Fig. 3A–C). We further investigated whether the resistance was specific to 

RTKi only or also to a VEGF blocker such as bevacizumab. We first confirmed that 

bevacizumab has an anti-tumor effect in a non-metastatic PDX model, RP-R-01 

(Supplemental Fig. 4A–C). Then, we treated mice bearing subcutaneous RP-R-02LM 

tumors with sunitinib, bevacizumab or vehicle and found that bevacizumab, but not sunitinib 

had a significant anti-tumor effect as measured by growth inhibition (Fig. 2D, E). Both 

bevacizumab and sunitinib treatment groups showed decreased blood vessel density (Fig. 2F, 

G) but a reduction in proliferating cells occurred only in the bevacizumab treated group (Fig. 

2F, H). A close observation of tumor metastases in the RP-R-02LM indicated an anti-

metastatic effect in both sunitinib and bevacizumab treated groups, though the effect was 

greater in the sunitinib treated group despite the lack of control of the primary tumor (Fig. 2 

I, J). This observation suggests that the anti-metastatic effect of sunitinib may be due to 

EMT inhibition as indicated by an increase in E-cadherin expression in tumor cells 

(Supplemental Fig. 4D).

Sunitinib induced resistance is associated with increased kinase activation and EZH2 
mediated global kinome programming

To determine what regulatory proteins were altered with sunitinib resistance, we ran a 

reverse phase protein array (RPPA) on RP-R-01 PDX treated with sunitinib. The analysis 

identified dynamic changes in the phosphorylation of several kinases and anti-apoptotic 

associated proteins including, AKT, EGFR, FAK, CDK1, PI3K, JAK2, and mTORC as 

tumors progressed from a sensitive to a resistant state (p>0.05) (Fig. 3A and Supplemental 

Fig. 5A). To identify potential mechanisms of sunitinib resistance, we first compared 

sensitive (786-0) and resistant (786-0R) ccRCC cell lines. 786-0R cells were generated by 
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chronic in vitro exposure to increasing concentrations of sunitinib. We compared the level of 

phosphorylation activity of several kinases using specific peptide-based kinase biosensors in 

786-0 and 786-0R cells. Fluorescence capture of specific kinases indicated a significant 

increase in phosphorylated Src (p>0.001), AKT (p>0.001), FAK (p>0.001) and a decrease in 

phosphorylated VEGFR in 786-0R cells, compared to the parental sensitive cell line 786-0 

indicating a potential kinome reprogramming in the resistant cells (Supplemental Fig. 5B). 

Then, we compared the effect of sunitinib treatment on kinase activity in 786-0 and 786-0R 

cells. Surprisingly, sunitinib treatment had opposite effects in these cell lines causing loss of 

kinase activity in 786-0 cells, but inducing kinase activity such as AKT in 786-0R cells (Fig. 

3B). Simultaneous detection of relative phosphorylated kinases using human phospho-RTK 

array indicated increase in phosphorylated kinases in resistant cells with sunitinib treatment 

(Supplemental Fig. 5C) indicating that sunitinib induces activation of alternative kinases.

To confirm the association of EZH2 expression with sunitinib exposure, we established a 

UMRC2 sunitinib resistant cell line and we subjected the resistant cells to drug washout 

before re-challenging them with sunitinib. Our immunofluorescence data indicates an 

increased in the intensity of EZH2 protein expression as the resistant cells were either 

acutely (after a 4 weeks wash out) or chronically exposed to sunitinib treatment 

(Supplemental Fig. 6). Similarly, we observed an increased global tyrosine and serine 

phosphorylation as well as increased phosphorylated FAK (Supplemental Fig. 6).

Phosphoproteomic mass spectrometry analysis in 786-0 sensitive and 786-0R resistant cells 

identified 3,041 phosphosites with 429 phosphosites enriched in the resistant cells, and 427 

enriched in the sensitive cells by volcano plots (Supplemental Fig. 7A, B). Generated 

heatmap indicated changes in enriched phosphosites as cells moved from sunitinib 

sensitivity to drug resistance (Fig. 3C). Further analysis to determine motif enrichment using 

motif-x and pLOGO indicated the presence of more acidic motifs in the resistant cells as 

compared to the sensitive cells (Supplemental Fig. 7C). DAVID pathway analysis for these 

enriched phosphosites in the resistant cells revealed that the associated kinases were 

involved in downstream VEGF signaling pathways even though VEGF-R expression was 

decreased (Supplemental Fig. 8). We also identified other signaling pathways prominent 

with resistance (Supplemental Figs. 9 and 10). We have previously reported an association 

of EZH2 induction with sunitinib acquired resistance (3). To test whether the increased 

levels of EZH2 observed in sunitinib resistant ccRCC cells was responsible for the kinome 

reprogramming associated with resistance we generated EZH2 knock down cell lines using 

786-0R cells (Supplemental Fig. 11A) and used immunofluorescence techniques to assess 

the kinome status. As expected, there was an increase in global phospho-serine and global 

phospho-tyrosine in the resistant cells as compared to the parental control (Fig. 3D, E). 

Sunitinib treatment decreased global phosphorylation in sensitive cells but significantly 

increased it in the resistant cells (p=0.0014). Similar effects on global serine 

phosphorylation were observed with other RTKI (Supplemental Fig. 11B). This opposite 

effect of sunitinib was consistent with our analysis of individual kinases and indicates a 

reprogramming induced by sunitinib that is unique to the resistant cells. Similar results were 

observed in our intrinsic sunitinib resistant in vivo model RP-R-02LM where 

immunofluorescence staining detecting global phosphorylated tyrosine and serine containing 

proteins revealed an increase which was abrogated by the EZH2 inhibitor EPZ011989 (36), 
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and further diminished in the combination treatment group (Fig. 3F). Taken together, these 

data suggest that EZH2 is responsible for the kinome reprogramming that occurs in sunitinib 

resistant ccRCC cells upon sunitinib treatment.

Sunitinib resistant cells depend on alternative kinases activation for growth which is 
attenuated by EZH2 inhibition

Given the dynamic changes in global phosphorylation and EZH2 role, we further determined 

whether these induced kinases activation led to cell survival. Using a 3D spheroid model we 

treated 786-0, 786-0R and 786-0R shEZH2 cells with sunitinib at different concentrations 

and measured cell death by propidium iodide (PI) uptake. In the parental 786-0 cells PI 

uptake increased (p=0.0017), indicating sunitinib-mediated cell death. In contrast, PI uptake 

in the 786-0R cells decreased upon sunitinib treatment consistently with sunitinib resistance, 

and potentially indicating an anti-apoptotic effect (Fig. 4A). Interestingly, 786-0R cells with 

the EZH2 knock down responded similarly to 786-0 cells, indicating a role for EZH2 in 

sunitinib resistance. Similar results were observed using another RTKi, axitinib in a 

conventional 2D assay, where decreased cell viability was observed with EZH2 inhibition in 

the resistant cell line (Supplemental Fig. 12). Thus, we compared the effect of sunitinib 

treatment on global phosphorylated tyrosine kinase activity in 786-0R and 786-0RshEZH2 

cells by phosphoproteomic mass spectroscopy. Generated heat map indicated dynamic 

changes in phosphorylated tyrosine kinases in 786-0R and 786-0RshEZH2 in the presence 

or absence of sunitinib (Fig. 4B). Multiple tyrosine kinases phosphorylation at specific sites 

including FGFR2, EGFR, EPHA4/5/3, AXL and JAK1 were increased in sunitinib treated 

786-0R cells. Interestingly, most the tyrosine enriched phospho-kinases were decreased in 

EZH2 knockdown cells and further significantly decreased in the presence also of sunitinib 

(p>0.05). In addition, FLIM peptide biosensor activity of p-AKT and p-VEGF-R2 and 

immunofluorescence intensity of p-FAK revealed again increased kinases activity with 

sunitinib treatment in resistant cells which was abrogated with inhibition of EZH2 (Fig. 4C). 

These observations were consistent with the results in our RP-R-02LM model 

(Supplemental Fig. 13A, B). Interestingly, we also observed a reversal of E-cadherin with 

treatment (Supplemental Fig. 13C). This observation suggests that resistant cells in the 

presence of sunitinib are dependent on alternative activated kinases for growth and evasion 

of cell death, and kinome reprogramming may enable tumor cells to escape the anti-tumor 

effect of sunitinib.

Sunitinib resistant phenotype is associated with a genomic EZH2 signature

To elucidate the molecular mechanism underlying EZH2 involvement in kinome 

reprogramming, we mapped EZH2 binding sites by ChIP next generation sequencing (ChIP-

seq) in 786-0, 786-0R and 786-0RsEZH2 cells. First, we compared EZH2 occupancy across 

the genome in both parental (786-0) and sunitinib resistant (786-0R) cells. Using a p-value 

cutoff of <0.01, we identified 2344 regions bound by EZH2 in 786-0 cells and 3544 regions 

in the 786-0R. This significant difference indicates that the higher EZH2 expression in 

786-0R cells resulted in increased genomic occupancy. Bound regions in both 786-0 and 

786-0R lines strongly correlated with known EZH2/SUZ binding sites in other cell types 

from the ENCODE ChIP-seq data (Supplemental Fig. 14A), confirming the quality of these 

data. Interestingly our results showed little overlap between regions bound by EZH2 in the 
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786-0 and the 786-0R cells, indicating a redistribution of EZH2 binding upon resistance 

(Fig. 5A and Supplemental Fig. 14B). EZH2 ChIP-seq was repeated in 786-0R cells with 

EZH2 knockdown (786-0RshEZH2). This resulted in decreased occupancy of the regions 

bound by EZH2 in the 786-0R cells (Fig. 5A), but a slight increase at regions bound in 

786-0 cells (Supplemental Fig. 14B) consistent with a reversal of the EZH2 redistribution. 

ChIP-seq of H3K27me3 indicated that this histone mark was present at regions bound by 

EZH2 and increased in 786-0R cells (Fig. 5A), consistent with the canonical role of EZH2 

as an H3K27me3 writer. To test whether the change in EZH2 chromatin occupancy was 

associated with an altered gene expression program that promotes sunitinib resistance we 

compared RNA-seq of 786-0, 786-0R and 786-0RshEZH2. The 786-0R cells had 3174 

genes that were up- or down-regulated 2-fold or more compared to the 786-0 cells. 

Strikingly, knockdown of EZH2 reversed these gene expression changes, with 87% of the 

up-regulated genes going back down, and 87% of the down-regulated genes going back up 

(Fig. 5B and Supplemental Table 2). Direct EZH2 target genes showed a similar reversal 

(Supplemental Fig. 14C). These findings indicate that EZH2 expression is a major regulator 

of the gene expression changes associated with sunitinib resistance in 786-0 cells. To test 

whether a similar phenomenon occurs in the PDX model, we performed RNA-seq of the 

parental RP-R-02 tumors, the metastatic RP-R-02LM tumors, and RP-R-02LM tumors from 

mice treated with the EZH2 inhibitor EPZ011989. In the PDX model the “return to normal” 

upon EZH2 inhibition was not as striking as it was when EZH2 was knocked down in the 

cell line model (Fig. 5B and Supplemental Table 2). This is consistent with the observation 

that there are multiple differences between the RP-R-02 and the RP-R-02LM tumors (i.e. 

both sunitinib resistance and metastasis), and thus the gene expression program mediated by 

EZH2 might be one of multiple changes. To compare the gene expression programs 

regulated by EZH2 in both cell line and tumor models, we examined the genes that change 

expression upon resistance and “return to normal” upon EZH2 knockdown or inhibition. 

These EZH2 regulated genes were associated with very similar functional categories in both 

the cell line and tumor system including KRAS signaling in the kidney and proteins of the 

apical surface of epithelial cells (Supplemental Fig. 14D). We then generated a list of 1847 

genes that were differentially expressed in the sunitinib resistant cells and “return to normal” 

upon EZH2 inhibition or knockdown, in both the cell line and tumor systems (Fig. 5C and 

Supplemental Table 2). Pathway analysis of this combined gene list showed a strong 

enrichment for pathways related to cancer and signaling pathways associated with kinases 

we identified as modified upon sunitinib resistance (Fig. 5C and Supplemental Table 2).

To identify EZH2 target genes that might mediate kinome reprogramming, we specifically 

examined genes encoding kinases and phosphatases. Comparing all EZH2 binding sites near 

a kinase or phosphatase gene, we observed a dramatic redistribution of EZH2 in the resistant 

cells that is partially restored upon EZH2 knockdown (Fig. 5D and Supplemental Table 2). 

Examples of genes associated with increased EZH2 occupancy include the Ras-GAP 

DAB2IP and the phosphatase PTPN3 (Fig. 5E). Both DAB2IP and PTPN3 decrease in 

expression in resistant cells, but increase upon EZH2 knockdown (Fig. 5E). Both DAB2IP 
and PTPN3 are tumor suppressors that inhibit oncogenic signaling pathways such as RAS/

MAPK and PI3K/AKT (37–40). In contrast, the PTK2 gene, which encodes the oncogenic 

kinase FAK, has decreased EZH2 binding in resistant cells that increases again upon EZH2 
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depletion (Fig. 5E). Consistently, PTK2 expression increases in resistant cells and decreases 

upon EZH2 depletion (Fig. 5E). Together, these data suggest that gene expression programs 

associated with kinome reprogramming and EMT in both the sunitinib resistant cell line and 

metastatic PDX model are caused by redistribution of EZH2 across the genome and can be 

reversed by its inhibition.

Combination of an EZH2 inhibitor and sunitinib induces regression of established lung 
metastases

To assess the efficacy of a combination treatment of EZH2 inhibition and sunitinib in both 

primary tumor growth and metastases in vivo, we treated mice bearing RP-R-02LM tumors 

prior to tumor dissemination to the metastatic site with an EZH2 inhibitor, EPZ011989, 

alone and in combination with sunitinib (Fig. 6A, B). EZH2 inhibition resulted in a modest 

inhibition of tumor growth. Again, we did not observe a significant inhibitory effect of 

sunitinib on tumor growth, although there was a decrease in tumor vasculature and 

metastases. The greatest reduction in primary tumor burden was observed with the 

combination treatment. We also observed decreased metastases in the combination, although 

the inhibition was not greater than with single agent sunitinib (Fig. 6B, C). Then, we further 

investigated the effect of this combination strategy in mice with established metastases. 

Using micro CT imaging, we observed that single agent sunitinib did not have a significant 

effect on established lung metastases. Treatment with EPZ011989 resulted in smaller lung 

nodules. However, we observed a significant regression of the metastatic burden the mice 

treated with the drug combination (Fig. 6D, E). Taken together, our data provide evidence 

that EZH2 plays a significant role in resistance to RTKi such as sunitinib, and inhibition of 

its activity re-establishes drug sensitivity.

EZH2 expression correlates with metastatic disease and decreased sunitinib response in 
ccRCC patients

To assess whether EZH2 expression is associated with intrinsic sunitinib resistance in 

ccRCC patients, we utilized a TMA made with 101 samples of primary tumors from 

nephrectomy specimens. We performed IHC staining on the tissues to detect EZH2 and first 

grouped the samples into EZH2 high (H score >median) and EZH2 low (H score < median) 

(Fig. 7A). Kaplan-Meier survival curves generated indicated a longer overall survival (OS) 

in patients with low EZH2 expression (median OS 60 months) compared to patients with 

high EZH2 expression (median OS 19 months) (p =0.05) (Fig. 7B). In a subset of 33 patients 

treated with RTKi we found that low EZH2 expression was associated with increased overall 

survival (median OS 122 months vs 23 months; p=0.005) (Fig. 7C). In addition, when we 

stratified into low, intermediate and high, we again observed poor survival benefit for 

patients with high EZH2 expression (Supplemental Fig. 15A–B).

DISCUSSION

Our findings suggest that EZH2 expression is associated with sunitinib intrinsic/acquired 

resistance in ccRCC via an adaptive kinome reprograming, and modulates the direct anti-

tumor effect of RTKi. EZH2 inhibition was associated with decreased global protein 

phosphorylation and specific kinase activation, and restoration of sunitinib direct anti-tumor 
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effect both in vitro and in vivo. These findings provide a rationale for the clinical testing of 

combination strategies with EZH2 and RTKi in ccRCC.

E-cadherin plays a critical role in cell-cell adhesion in epithelial tissues, some of which 

includes cell transformation, tumor development and progression. The loss of function of E-

cadherin is generally associated with increased expression of N-Cadherin, ZEB and SNAIL. 

ZEB and SNAIL mediate EMT allowing cells to detach from tumor and migrate to 

secondary site (41). Our qRT-PCR data revealed an increase in N-cadherin, ZEB and SNAIL 
in the metastatic model. A significant increase in HIF2α was observed in the RP-R-02LM. 

Increase in HIF2α has been reported to correlate with gene signatures of EMT in lung 

cancer models (42). We also observed an increase in expression of metastasis associated 

genes ALDH1A, E2F-1, SETD2 and EZH2 (42–45). To our knowledge, RP-R02LM is the 

first ccRCC PDX model with high incidence of spontaneous lung metastases to be reported 

in the literature, and therefore represents a valuable tool to study the molecular mechanisms 

involved in disease progression and for drug development.

The human kinome contains proteins kinases that comprise 1.7% of the human genome (46). 

Protein phosphorylation modulates enzyme localization and activity involved in several 

processes including cell cycle, angiogenesis, proliferation and differentiation (47). Among 

the protein kinases, tyrosine kinases, specifically RTKs such as VEGFR, HER/EGFR, 

PDGFR and FGFR have been associated with cancer progression. Several mechanisms have 

been proposed for the acquired/intrinsic resistance to anti-VEGF agents in ccRCC, including 

alternative pathway activation (i.e. c-MET and AXL) (7) and EMT (48). Targeting specific 

kinases and signaling networks critical for tumor growth may evoke adaptive kinome 

response that may bypass the primary drug target and activate or up-regulate alternative 

kinase signaling networks. Our reverse phase protein microarray data highlighted several 

proteins with increased expression in PDX tumors at the time of resistance to sunitinib. 

Interestingly, the majority of these kinases and receptor kinases analyzed were increased, 

although, as expected, the expression of sunitinib-targeted kinases, such as VEGF-R2 TK, 

was decreased. Other pro-survival proteins or downstream signaling proteins were expressed 

with resistance. Following the results from our RPPA on the activation of alternative kinases 

and RTKs, we performed phosphoproteomic analysis of phosphosites by MS, and assessed 

the phosphorylating activity of selected kinases in sensitive and resistant cell lines by 

fluorescence life imaging (FILM). This analysis confirmed the increased expression levels of 

alternative kinases as a result of sunitinib-induced resistance. The data from FILM of kinase 

peptide bio-sensors, which measures the phosphorylating activity of kinases, suggest that 

alternative kinases such as AKT, FAK, and Src had an increased phosphorylating activity in 

the resistant cell line. After a complete sunitinib washout phase in the resistant cells 

followed by re-exposure to sunitinib, we observed an increase in p-AKT in the re-exposed 

sunitinib treated cells compared to the control, confirming an activation of an alternative 

kinase with resistance to sunitinib. In addition, from all 3,041 phosphosites identified by 

phosphoproteomic mass spectroscopy, 429 phosphosites were enriched in the resistant cells 

and 427 were enriched in the sensitive cells. While the differences between sensitive and 

resistant cells were not significant, further motif analysis indicated an increase in the 

presence of acidic motifs in the resistant cells. Acidic motifs have been identified as 

potential downstream substrates of receptor tyrosine kinase signaling pathways (49). Thus, 
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our data suggest that induced resistance to RTKi, such as sunitinib, may be associated with 

an adaptive kinome reprogramming where alternative kinases are activated to compensate 

for the inhibition of the target receptor kinases, a phenomenon that has been reported in 

other cancers resistant to TKi (6, 50). Taken together, the activation of kinases in resistant 

786-0R cells following re-exposure to sunitinib suggests that, in the setting of acquired 

resistance, RTKi may indeed act as activators rather than inhibitors.

Recent reports have suggested that cells in an “epigenetic poised” state may be associated 

with drug resistance (51). This state has the potential to revert back to non-tolerance if the 

epigenetic effect is inhibited. Our models of acquired (786-0R) and intrinsic (RP-R-02LM) 

resistance were associated with an increased expression of EZH2 suggesting a possible 

epigenetic mechanism. Indeed, increased global phosphorylation at tyrosine and serine 

residues was associated with increased EZH2 expression in the resistant phenotype. More 

interestingly, sunitinib treatment further increased global phosphorylation and co-

localization with EZH2 suggesting that EZH2 may be interacting post-translationally with 

kinases leading to the stability of their expression and activity. Recent studies have reported 

that inhibition of epigenetic modulators can hinder the adaptation to an induced kinase 

reprogramming (6, 52). We found that the higher EZH2 levels in sunitinib-resistant cells 

correlated with novel EZH2 chromatin occupancy and increased H3K27 tri-methylation. 

Furthermore, knockdown of EZH2 largely reversed gene expression changes associated with 

resistance. To elucidate the molecular mechanism of EZH2 involvement in kinome 

reprogramming, we mapped EZH2 binding sites in 786-0, 786-0R and 786-0RshEZH2 cells 

and specifically examined genes encoding kinases and phosphatases. Our data indicated a 

dramatic shift in EZH2 enriched sites as cells moved from sensitivity to resistance. In the 

resistant cells we saw increased EZH2 occupancy at some genes, such as DAB2IP and 

PTPN3. However, we observed loss at others, indicating redistribution, rather than simply 

more EZH2 binding. In particular, EZH2 binding decreased in resistant cells at the gene 

(PTK2) encoding Focal Adhesion Kinase (FAK). In the past several studies have reported 

FAK to play a crucial role in mediating tyrosine phosphorylation of proteins, in some cases 

function as a scaffold in various signaling events and its interaction with EZH has been 

shown to play a crucial role in disease progression (53). Interestingly, our RPPA data also 

indicated an increase in FAK expression in the resistant models. Upon knockdown of EZH2 

we observed a significant decrease in FAK expression at the gene level. In addition, 

immunofluorescence analysis indicated a significant decrease in pFAK in both 

786-0RshEZH2 and RP-R-02LM treated with EZH2 inhibitor. FAK has also been shown to 

interact with PI3K, activating the PI3K/AKT pathway (54). Although our ChIP data showed 

no enrichment for AKT, protein expression analysis indicated an increase in pAKT which 

was attenuated upon inhibition of EZH2i which indicates the possible role of FAK mediating 

PI3K/AKT signaling pathway. Interestingly, pathway analysis identified PI3K/AKT 

signaling pathway as one of the top altered pathways. Our data indicates that a possible 

mechanism by which EZH2 affects kinome reprogramming is through modulation of kinases 

such as FAK at the transcriptional and post translational levels. Targeting EZH2 provides the 

mechanism by which inhibition of EZH2 may modulate kinome reprogramming.

EZH2 has been reported to be associated with aggressive disease and poor survival in RCC 

patients (18) (55). Our data confirm the clinical relevance of EZH2 by showing a shorter 
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overall survival in ccRCC patients with high EZH2 expressing tumors. Interestingly, a subset 

of ccRCC patients who have received RTKi had an even greater difference in overall 

survival if EZH2 was over-expressed in the primary tumors as compared to patients with low 

levels of EZH2. Though, we recognize that these results are limited due to the small sample 

size and validation in a larger cohort of patients is needed. However, all together, these 

clinical data suggest that EZH2 not only represent a potential target for therapeutic 

interventions, but also a possible predictive marker to identify those patients who may not 

benefit from RTKi. Prospective clinical studies will be required to confirm this hypothesis.

In conclusion, our results suggest that sunitinib resistance in ccRCC may be due in part to a 

compromised direct anti-tumor effect which appears to be modulated by EZH2. Adaptive 

kinase reprogramming resulting from resistance to small molecule RTKi such as sunitinib 

may be associated with epigenetic modulators that up regulate alternative kinases as an 

escape mechanism to tumor survival. We anticipate that our findings will be of immediate 

clinical relevance since EZH2 inhibitors are already in advanced clinical development and 

may be combined with RTKi to overcome/delay drug resistance in ccRCC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characteristics of RP-R-02LM
(A) Schematic of the development of the metastatic ccRCC model, RP-R-02LM (B) Coronal 

T2-weighted magnetic resonance images showing primary tumor (outlined in red dotted 

lines) and lung metastases (red arrows) in mice with orthotopic implanted RP-R-02LM 

tumor. (C) Representative photographic images and H&E stained lungs of mice bearing RP-

R-02LM indicate lungs metastasis compared to the parental model. (D) Representative H&E 

stained sections of RP-R-02 and RP-R-02LM primary PDX (subcutaneous) indicate that 

both models still maintain the clear cell morphology after several passages in mice (400um). 
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(E) PCR data indicates the presence of human Alu sequence in both the parental and the 

metastatic models. (F) Quantitative RT-PCR of genes associated with metastases shows an 

increase in ZEB, HIF1α, N-Cadherin, STED2, EZH2, E2F1, Snail, and ALH1A1 
expression, and a decrease in E-cadherin and VASH1 expression in RP-R-02LM compared 

to RP-R-02. (*p-value = <0.01, **p-value = <0.001, ns= not significant). (F) 

Immunohistochemistry staining and quantification analysis of E-cadherin and EZH2 in RP-

R-02 and RP-R-02LM tumors.
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Figure 2. Sunitinib treatment fails to inhibit tumor growth in RP-R-02LM but inhibits 
metastases
(A) Tumor growth curves of mice treated with sunitinib had no significant difference in the 

growth rate compared to the control, indicating that the tumors are intrinsically resistant to 

sunitinib. (B) Kaplan-Meier curves showing a significant survival benefit with Sunitinib 

treatment compared to untreated control animals. (C) Tumor growth curve for mice 

untreated or treated with either sunitinib or axitinib. (D-E) Tumor growth of mice untreated 

or treated with either sunitinib or bevacizumab indicates a significant decrease in the 

bevacizumab treated group compared to sunitinib and control. (F) Immunohistochemistry 

Adelaiye-Ogala et al. Page 23

Cancer Res. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicates decreased vessel density (CD31) with sunitinib and bevacizumab treatment but a 

decrease in percent of proliferating cells (Ki67) in only bevacizumab treated groups. (G,H) 

Graphs indicate quantitative analysis of CD31 and Ki67 in the primary tumors within each 

treatment group. (I) Photographic evidence of decreased metastatic burden with both 

sunitinib and bevacizumab treatment. (J) Graph indicates quantitative analysis of percentage 

of tumor burden in the lungs within each treatment group. Results are presented as mean ± 

SEM. *p-value = <0.05, **p-value = <0.005, ***p-value = <0.001, ns=not significant.
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Figure 3. Sunitinib induced resistance is associated with an increase in EZH2 and alternative 
kinases
(A) Heatmap of selected phosphorylated kinases and proteins in RP-R-01 PDX models at 

the point of sensitivity and resistance to sunitinib. (B) Representative images of peptide-

based kinase biosensor in sunitinib-resistant generated cells 786-0R and 786-0; Bar graphs 

indicating significant increase in phosphorylating activity of AKT with resistance. (C) 

Generated heatmap from phosphoproteomic MS analysis indicates a shift in the differential 

enrichment of phosphosites as cells moves from sensitivity to resistance in ccRCC cell lines. 

(D) Immunofluorescence staining of 786-0, 786-0R and 786-0RshEZH2 cells indicate 

increased global phospho-tyrosine and phospho-serine in 786-0R cells with sunitinib 

treatment which was attenuated with knockdown of EZH2. (E) Quantitative analysis on RP-

R-02LM tumor pieces indicates a significant increase in global tyrosine and global serine 

phosphorylation with sunitinib treatment which is abrogated with pharmacological inhibition 

of EZH2 and combination with sunitinib. Results are presented as means + SEM. ****p-

value = <0.0001.
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Figure 4. EZH2 inhibition diminishes induced global phosphorylation leading to sunitinib 
sensitivity in resistant models
(A) 3D spheroid assay indicating fold change in PI uptake in 786-0, 786-0R and 

786-0RshEZH2 cells with increasing concentration of sunitinib. (B) Heatmap generated 

from pY enrichment analysis indicating dynamic changes in tyrosine phosphorylated kinases 

in 786-0R and 786-0RshEZH2 cells in the presence or absence of sunitinib. Table indicates 

prominent kinases that were increased with sunitinib treatment to be decreased with EZH2 

inhibition. (C) Quantitative analysis of immunofluorescence intensity for p-FAK and p-AKT 

in 786-0, 786-0R and 786-0RshEZH2 cells revealed an increased intensity and activity with 
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sunitinib treatment in 786-0R cells which was significantly decreased with knockdown of 

EZH2. (D). Results are presented as means + SEM. ****p-value = <0.0001.
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Figure 5. EZH2 expression mediates a gene expression program associated with kinome 
reprogramming and epithelial cell function
(A) Heatmap comparison of EZH2 or H3K27me3 ChIP-seq read counts from indicated cell 

lines at the 3544 regions bound by EZH2 in 786-0R cells. (B-Left) Heatmap showing all up- 

and down-regulated genes rank-ordered by z-score change in 786-0R cells compared to 

786-0 cells and showing how expression of these genes changes upon EZH2 shRNA in 

786-0R cells. (B-Right) Similarly, genes altered in RP-R-02LM tumors compared to RP-

R-02 tumors are shown followed by “return to normal” upon EZH2 inhibition. (C) Heatmap 

displays 1847 genes that increase or decrease in expression upon resistance in both cell line 

and tumor system and return to normal upon EZH2 shRNA in both systems. Pathway 

analysis (65) of these 1847 genes indicates strong enrichment for pathways related to cancer 

and the kinases which were modified upon sunitinib resistance. (D) Heatmap depicts EZH2 

bound sites near kinase and phosphatase encoding genes in 786-0, 786-0R and 

786-0RshEZH2. (E) ChIP-seq tracks and bar charts for DAB2IP, PTPN3 and PTK2 show 
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gain or loss of EZH2 binding that correlates with gene expression changes measured by 

RNA-seq (n=2, error bars show 95% confidence interval).
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Figure 6. Combination of EZH2 inhibitor and sunitinib overcomes sunitinib resistance
(A) Schema representation of in vivo study and time of treatment prior to development of 

metastases is depicted. (B) Tumor growth curve assessed by blinded measurements using 

calipers, endpoint tumor weight, and decreased percentage of vessel density and 

proliferating cells (4 random fields/tissue 20X magnification) indicates an overall decreased 

in tumor burden in the combination group. (C) Representative photographic evidence and 

H&E images of lungs in each group indicates a significant decreased in metastatic burden in 

sunitinib treated group and the group treated with combination of both drugs. (D) A schema 
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representation of in vivo studies treated after development of metastases. (E-Right) 

Representative micro CT images (1st & 2nd panel), photographic images (3rd panel) and 

H&E staining (4th panel) of lungs with or without treatment indicate a significant decrease 

of metastases in combination treatment compared to controls and single agent. (E-left) 

Quantification of tumor nodules in the lungs indicates a significant decrease in the 

combination group. Results are presented as means ± SEM, *p-value = <0.05, **p-value = 

<0.005, ***p-value = <0.001 and ns=not significant.
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Figure 7. EZH2 expression is associated with poor survival in ccRCC
(A) Immunohistochemistry analysis for EZH2 and H-score on 3 cores of primary and 

metastatic ccRCC. Representative pictures of either high (H-score >median) or low (H-score 

<median) EZH2 expression are shown. (B) The Kaplan-Meier survival curve indicates that 

the median overall survival for EZH2 expression “below median” is 60 months compared to 

“above median,” 19 months. The hazard ratio for above vs below (below as baseline) is 1.6, 

with 95% confidence interval as [1.0, 2.5] and p-value as 0.05. (C) Similarly, the OS of a 

subset of patients that received RTKI indicates median overall survival for “below median” 
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to be 122 months vs “above median” 23 months. The hazard ratio for above vs below (below 

as baseline) is 5.6, with 95% confidence interval as [1.7, 18.7] and p-value as 0.005.
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