505 research outputs found

    Role of fibronectin deposition in cystogenesis of Madin-Darby canine kidney cells

    Get PDF
    Role of fibronectin deposition in cystogenesis of Madin-Darby canine kidney cells.BackgroundMadin-Darby canine kidney (MDCK) cells cultured within collagen I gel exhibit clonal growth and form spherical multicellular cysts. The cyst-lining epithelial cells are polarized with the basolateral surface in contact with the collagen gel and the apical surface facing the lumen. To understand whether MDCK cysts construct the basal lamina, we characterized the composition of the extracellular matrix deposited by MDCK cysts. The cyst-lining cells produced an apparently incomplete basal lamina containing a discontinuous laminin substratum. In addition, the basal cell surface of the cyst was surrounded by a thick layer of fibronectin. This study was conducted to delineate the role of fibronectin deposition in cystogenesis.MethodsMDCK cells cultured in collagen gel were employed. We first used Arg-Gly-Asp (RGD) peptides containing disintegrin rhodostomin to disturb the interaction between fibronectin and the cell surface integrin. We then established several stable transfectants expressing the fibronectin antisense RNA and with which to directly examine the role of fibronectin in cystogenesis.ResultsRhodostomin markedly decreased the growth rates of the MDCK cyst, suggesting the importance of a normal interaction between fibronectin and integrins. The stable transfectants overexpressing the fibronectin antisense RNA exhibited relatively lower levels of fibronectin and markedly lower cyst growth rates than the control clone. The lower growth rate was correlated with an increase in collagen gel-induced apoptosis.ConclusionsThe results indicate that the deposition of fibronectin underlying the cyst-lining epithelium serves to prevent apoptosis induced by three-dimensional collagen gel cultures, and hence facilitates cyst growth of MDCK cells

    Drosophila eyes absent is a Novel mRNA Target of the Tristetraprolin (TTP) Protein DTIS11

    Get PDF
    The Tristetraprolin (TTP) protein family includes four mammalian members (TTP, TIS11b, TIS11d, and ZFP36L3), but only one in Drosophila melanogaster (DTIS11). These proteins bind target mRNAs with AU-rich elements (AREs) via two C3H zinc finger domains and destabilize the mRNAs. We found that overexpression of mouse TIS11b or DTIS11 in the Drosophila retina dramatically reduced eye size, similar to the phenotype of eyes absent (eya) mutants. The eya transcript is one of many ARE-containing mRNAs in Drosophila. We showed that TIS11b reduced levels of eya mRNA in vivo. In addition, overexpression of Eya rescued the TIS11b overexpression phenotype. RNA pull-down and luciferase reporter analyses demonstrated that the DTIS11 RNA-binding domain is required for DTIS11 to bind the eya 3′ UTR and reduce levels of eya mRNA. Moreover, ectopic expression of DTIS11 in Drosophila S2 cells decreased levels of eya mRNA and reduced cell viability. Consistent with these results, TTP proteins overexpressed in MCF7 human breast cancer cells were associated with eya homologue 2 (EYA2) mRNA, and caused a decrease in EYA2 mRNA stability and cell viability. Our results suggest that eya mRNA is a target of TTP proteins, and that downregulation of EYA by TTP may lead to reduced cell viability in Drosophila and human cells

    Excoecarianin, Isolated from Phyllanthus urinaria Linnea, Inhibits Herpes Simplex Virus Type 2 Infection through Inactivation of Viral Particles

    Get PDF
    Phyllanthus urinaria Linnea (Euphorbiaceae) is one of the traditional medicinal plants widely used by oriental people to treat various diseases. We have previously demonstrated that the acetone extract of P. urinaria inhibits herpes simplex virus type 2 (HSV-2) but not HSV-1 infection. In a continuing effort to clarify the antiviral mechanisms of P. urinaria, we isolated the pure compound excoecarianin from the whole plant of P. urinaria through acetone extraction, and investigated its anti-HSV-1 and HSV-2 activities. Our results indicated that excoecarianin protected Vero cells from HSV-2 but not HSV-1 infection, and its 50% inhibitory concentration (IC50) was 1.4 ± 0.1 μM. The antiviral effective concentration of excoecarianin did not affect the viability or the morphology of Vero cells. Although excoecarianin inhibited HSV-2 infection, the inhibitory effect, however, was most prominent when excoecarianin was concurrently added with the virus. Pretreatment of Vero cells with excoecarianin with removal of the drug prior to infection did not yield any antiviral effects, and the same observation was made for post viral entry treatment. Subsequent studies revealed that excoecarianin inactivated HSV-2 virus particles to prevent viral infection. A synergistic antiviral effect against HSV-2 was also observed when Vero cells were treated with a combination of acyclovir (ACV) and excoecarianin. These results suggested that excoecarianin merits to be further explored as an entry inhibitor against HSV-2 and could potentially be investigated for combinatorial drug treatment with nucleoside analogues such as ACV in therapeutic management of HSV-2 infection

    Square Key Matrix Management Scheme in Wireless Sensor Networks

    Get PDF
    In this paper we propose a symmetric cryptographic approach named Square Key Matrix Management Scheme (SKMaS) in which a sensor node named Key Distribution Server (KDS) is responsible for the security of key management. When the system starts up, the KDS sends its individual key and two sets of keys to sensor nodes. With the IDs, any two valid sensor nodes, e.g. i and j, can individually identify the corresponding communication keys (CKs) to derive a dynamic shared key (DSK) for encrypting/decrypting messages transmitted between them. When i leaves the underlying network, the CKs and the individually keys currently utilized by i can be reused by a newly joining sensor, e.g. h. However, when h joins the network, if no such previously-used IDs are available, h will be given a new ID, CKs and the individually key by the KDS. The KDS encrypts the CKs, with which an existing node q can communicate with h, with individual key so that only q rather than h can correctly decrypt the CKs. The lemmas and security analyses provided in this paper prove that the proposed system can protect at least three common attacks

    CAE Analysis of Secondary Shaft Systems in Great Five-axis Turning-Milling Complex CNC Machine

    Get PDF
    The commercial computer aided engineering (CAE) software is used to analyze the linear-static construction, stress and deformation for the secondary shaft systems in great five-axis turning-milling complex computer numerical control (CNC) machine. It is convenient and always only three dimensional (3D) graphic parts needed firstly prepared and further more detail used for the commercial CAE. It is desirable to predict a deformed position for the cut tool under external pressure loads in the working process of CNC machine. The linear results for static analysis of stresses, displacements in corresponding to the screw shaft locates at top, medium and bottom positions of the secondary shaft systems are obtained by using the simulation module of SOLIDWORKS®

    Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon

    Get PDF
    We present a simple and novel assay—employing a universal molecular beacon (MB) in the presence of Hg2+—for the detection of single nucleotide polymorphisms (SNPs) based on Hg2+–DNA complexes inducing a conformational change in the MB. The MB (T7-MB) contains a 19-mer loop and a stem of a pair of seven thymidine (T) bases, a carboxyfluorescein (FAM) unit at the 5′-end, and a 4-([4-(dimethylamino)phenyl]azo)benzoic acid (DABCYL) unit at the 3′-end. Upon formation of Hg2+–T7-MB complexes through T–Hg2+–T bonding, the conformation of T7-MB changes from a random coil to a folded structure, leading to a decreased distance between the FAM and DABCYL units and, hence, increased efficiency of fluorescence resonance energy transfer (FRET) between the FAM and DABCYL units, resulting in decreased fluorescence intensity of the MB. In the presence of complementary DNA, double-stranded DNA complexes form (instead of the Hg2+–T7-MB complexes), with FRET between the FAM and DABCYL units occurring to a lesser extent than in the folded structure. Under the optimal conditions (20 nM T7-MB, 20 mM NaCl, 1.0 μM Hg2+, 5.0 mM phosphate buffer solution, pH 7.4), the linear plot of the fluorescence intensity against the concentration of perfectly matched DNA was linear over the range 2–30 nM (R2 = 0.991), with a limit of detection of 0.5 nM at a signal-to-noise ratio of 3. This new probe provides higher selectivity toward DNA than that exhibited by conventional MBs

    Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea

    Get PDF
    Background: Prokaryotic microbes, the most abundant organisms in the ocean, are remarkably diverse. Despite numerous studies of marine prokaryotes, the zonation of their communities in pelagic zones has been poorly delineated. By exploiting the persistent stratification of the South China Sea (SCS), we performed a 2-year, large spatial scale (10, 100, 1000, and 3000 m) survey, which included a pilot study in 2006 and comprehensive sampling in 2007, to investigate the biological zonation of bacteria and archaea using 16S rRNA tag and shotgun metagenome sequencing. Results: Alphaproteobacteria dominated the bacterial community in the surface SCS, where the abundance of Betaproteobacteria was seemingly associated with climatic activity. Gammaproteobacteria thrived in the deep SCS, where a noticeable amount of Cyanobacteria were also detected. Marine Groups II and III Euryarchaeota were predominant in the archaeal communities in the surface and deep SCS, respectively. Bacterial diversity was higher than archaeal diversity at all sampling depths in the SCS, and peaked at mid-depths, agreeing with the diversity pattern found in global water columns. Metagenomic analysis not only showed differential %GC values and genome sizes between the surface and deep SCS, but also demonstrated depth-dependent metabolic potentials, such as cobalamin biosynthesis at 10 m, osmoregulation at 100 m, signal transduction at 1000 m, and plasmid and phage replication at 3000 m. When compared with other oceans, urease at 10 m and both exonuclease and permease at 3000 m were more abundant in the SCS. Finally, enriched genes associated with nutrient assimilation in the sea surface and transposase in the deep-sea metagenomes exemplified the functional zonation in global oceans. Conclusions: Prokaryotic communities in the SCS stratified with depth, with maximal bacterial diversity at mid-depth, in accordance with global water columns. The SCS had functional zonation among depths and endemically enriched metabolic potentials at the study site, in contrast to other oceans
    corecore