294 research outputs found

    Special Issue: Viruses Infecting Fish, Amphibians, and Reptiles

    Get PDF
    Although viruses infecting and affecting humans are the focus of considerable research effort, viruses that target other animal species, including cold-blooded vertebrates, are receiving increased attention. In part this reflects the interests of comparative virologists, but increasingly it is based on the impact that many viruses have on ecologically and commercially important animals. Frogs and other amphibians are sentinels of environmental health and their disappearance following viral or fungal (chytrid) infection is a cause for alarm. Likewise, because aquaculture and mariculture are providing an increasingly large percentage of the “seafood” consumed by humans, viral agents that adversely impact the harvest of cultured fish and amphibians are of equal concern. [...

    Introduction: History and Future of Ranaviruses

    Get PDF
    Dr. Allan Granoff (1923–2012), who isolated the first ranavirus (Granoff et al. 1966), had, scattered throughout his office at St. Jude Children’s Research Hospital, a variety of frog-related items including the poem cited above. Although one of Allan’s isolates, Frog virus 3 (FV3), subsequently became the best-characterized member of both the genus (Ranavirus) and the family (Iridoviridae); the impact of that discovery was not fully appreciated at the time. FV3 was neither the first iridoviridae to be recognized as a pathogen of lower vertebrates or the first isolated. Those honors belonged to lymphocystis disease virus (LCDV) and Invertebrate iridovirus 1 (IIV1), respectively (Wissenberg 1965; Xeros 1954). LCDV is responsible for a generally non-life threatening, but disfiguring, disease in fish characterized by the appearance of wart-like growths on the skin and (rarely) internal organs, whereas IIV1 is the causative agent of latent and patent infections in crane fly larvae. Despite its lack of primacy, FV3 was studied because, in keeping with the mission of St. Jude Hospital, it was initially thought to be linked to adenocarcinoma in frogs and thus could be a useful model of human malignancies. Furthermore, unlike LCDV and IIV1, it could be readily grown in cultured cells and was thus amenable to detailed molecular characterization. Although its role in tumor development was soon proven incorrect, FV3 served as a gateway into understanding the replication strategy of a heretofore poorly studied virus family. Moreover, over the next 20 years, its study led to important insights not only into iridoviridae replication, but also eukaryotic biology, virus evolution, and host–virus interactions

    Molecular Characterization, Sequence Analysis, and Taxonomic Position of Newly Isolated Fish Iridoviruses

    Get PDF
    AbstractWithin the past decade, iridoviruses have been identified as the causative agents of systemic disease in a variety of commercially and recreationally important fish. Here we examine nine iridoviruses from fish, reptiles, and amphibians and demonstrate that all isolates were more similar to frog virus 3, the type species of the genusRanavirus,than to lymphocystis disease virus, the type species of the genusLymphocystivirus.Comparison of viral protein synthesis profiles, restriction endonuclease digestion patterns, and the amino acid sequence of the major capsid protein indicated that iridoviruses isolated from the same geographic region were similar, if not identical, whereas viruses from different areas were distinct. Moreover, using primers complementary to the conserved major capsid protein, we found that both PCR and RT-PCR successfully amplified virus-specific nucleic acid from all nine isolates. These studies demonstrate that the piscine iridoviruses examined here were members of the genusRanavirus,and suggest that surveys of pathogenic “fish viruses” may need to include neighboring amphibian and reptilian populations. In addition, the results indicate that PCR readily identified vertebrate iridoviruses and suggest that PCR will be useful in the diagnosis of fish disease

    THIRD INTERNATIONAL SYMPOSIUM ON RANAVIRUSES:: ADVANCING THE UNDERSTANDING OF THE THREAT OF RANAVIRUSES TO NORTH AMERICAN HERPETOFAUNA

    Get PDF
    Members of the genus Ranavirus, one of five genera withinthe family Iridoviridae, encompass a group of large, doublestrandedDNA viruses that infect all three classes of ectothermicvertebrates: fish, amphibians, and reptiles. Ranaviruses areglobally emerging pathogens that cause considerable morbidityand mortality among diverse populations. In North America,ranavirus epizootics are regularly reported in wild and culturedfish, amphibian, and reptile populations

    Characterization of a ranavirus inhibitor of the antiviral protein kinase PKR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ranaviruses (family <it>Iridoviridae</it>) are important pathogens of lower vertebrates. However, little is known about how they circumvent the immune response of their hosts. Many ranaviruses contain a predicted protein, designated vIF2α, which shows homology with the eukaryotic translation initiation factor 2α. In analogy to distantly related proteins found in poxviruses vIF2α might act as an inhibitor of the antiviral protein kinase PKR.</p> <p>Results</p> <p>We have characterized the function of vIF2α from <it>Rana catesbeiana </it>virus Z (RCV-Z). Multiple sequence alignments and secondary structure prediction revealed homology of vIF2α with eIF2α throughout the S1-, helical- and C-terminal domains. Genetic and biochemical analyses showed that vIF2α blocked the toxic effects of human and zebrafish PKR in a heterologous yeast system. Rather than complementing eIF2α function, vIF2α acted in a manner comparable to the vaccinia virus (VACV) K3L protein (K3), a pseudosubstrate inhibitor of PKR. Both vIF2α and K3 inhibited human PKR-mediated eIF2α phosphorylation, but not PKR autophosphorylation on Thr446. In contrast the E3L protein (E3), another poxvirus inhibitor of PKR, inhibited both Thr446 and eIF2α Ser51 phosphorylation. Interestingly, phosphorylation of eIF2α by zebrafish PKR was inhibited by vIF2α and E3, but not by K3. Effective inhibition of PKR activity coincided with increased PKR expression levels, indicative of relieved autoinhibition of PKR expression. Experiments with vIF2α deletion constructs, showed that both the N-terminal and helical domains were sufficient for inhibition of PKR, whereas the C-terminal domain was dispensable.</p> <p>Conclusions</p> <p>Our results show that RCV-Z vIF2α is a functional inhibitor of human and zebrafish PKR, and probably functions in similar fashion as VACV K3. This constitutes an important step in understanding the interaction of ranaviruses and the host innate immune system.</p

    The Molecular Biology of Frog Virus 3 and other Iridoviruses Infecting Cold-Blooded Vertebrates

    Get PDF
    Frog virus 3 (FV3) is the best characterized member of the family Iridoviridae. FV3 study has provided insights into the replication of other family members, and has served as a model of viral transcription, genome replication, and virus-mediated host-shutoff. Although the broad outlines of FV3 replication have been elucidated, the precise roles of most viral proteins remain unknown. Current studies using knock down (KD) mediated by antisense morpholino oligonucleotides (asMO) and small, interfering RNAs (siRNA), knock out (KO) following replacement of the targeted gene with a selectable marker by homologous recombination, ectopic viral gene expression, and recombinant viral proteins have enabled researchers to systematically ascertain replicative- and virulence-related gene functions. In addition, the application of molecular tools to ecological studies is providing novel ways for field biologists to identify potential pathogens, quantify infections, and trace the evolution of ecologically important viral species. In this review, we summarize current studies using not only FV3, but also other iridoviruses infecting ectotherms. As described below, general principles ascertained using FV3 served as a model for the family, and studies utilizing other ranaviruses and megalocytiviruses have confirmed and extended our understanding of iridovirus replication. Collectively, these and future efforts will elucidate molecular events in viral replication, intrinsic and extrinsic factors that contribute to disease outbreaks, and the role of the host immune system in protection from disease

    ICTV Virus Taxonomy Profile: Iridoviridae

    Get PDF
    The Iridoviridae is a family of large, icosahedral viruses with double-stranded DNA genomes ranging in size from 103 to 220 kbp. Members of the subfamily Alphairidovirinae infect ectothermic vertebrates (bony fish, amphibians and reptiles), whereas members of the subfamily Betairidovirinae mainly infect insects and crustaceans. Infections can be either covert or patent, and in vertebrates they can lead to high levels of mortality among commercially and ecologically important fish and amphibians. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Iridoviridae, which is available at www.ictv.global/report/iridoviridae.</p

    Megalocytiviruses

    Get PDF
    The genus Megalocytivirus, represented by red sea bream iridovirus (RSIV), the first identified and one of the best characterized megalocytiviruses, Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus, and numerous other isolates, is the newest genus within the family Iridoviridae. Viruses within this genus are causative agents of severe disease accompanied by high mortality in multiple species of marine and freshwater fish. To date outbreaks of megalocytivirus-induced disease have occurred primarily in south-east Asia and Japan, but infections have been detected in Australia and North America following the importation of infected ornamental fish. The first outbreak of megalocytiviral disease was recorded in cultured red sea bream (Pagrus major) in Japan in 1990 and was designated red sea bream iridovirus disease (RSIVD). Following infection fish became lethargic and exhibited severe anemia, petechiae of the gills, and enlargement of the spleen. Although RSIV was identified as an iridovirus, sequence analyses of RSIV genes revealed that the virus did not belong to any of the four known genera within the family Iridoviridae. Thus a new, fifth genus was established and designated Megalocytivirus to reflect the characteristic presence of enlarged basophilic cells within infected organs. Indirect immunofluorescence tests employing recently generated monoclonal antibodies and PCR assays are currently used in the rapid diagnosis of RSIVD. For disease control, a formalin-killed vaccine was developed and is now commercially available in Japan for several fish species. Following the identification of RSIV, markedly similar viruses such as infectious spleen and kidney necrosis virus (ISKNV), dwarf gourami iridovirus (DGIV), turbot reddish body iridovirus (TRBIV), Taiwan grouper iridovirus (TGIV), and rock bream iridovirus (RBIV) were isolated in East and Southeast Asia. Phylogenetic analyses of the major capsid protein (MCP) and ATPase genes indicated that although these viruses shared considerable sequence identity, they could be divided into three tentative species, represented by RSIV, ISKNV and TRBIV, respectively. Whole genome analyses have been reported for several of these viruses. Sequence analysis detected a characteristic difference in the genetic composition of megalocytiviruses and other members of the family in reference to the large and small subunits of ribonucleotide reductase (RR-1, RR‑2). Megalocytiviruses contain only the RR-2 gene, which is of eukaryotic origin; whereas the other genera encode both the RR-1 and RR-2 genes which are thought to originate from Rickettsia-like α-proteobacteria

    Development and Disease: How Susceptibility to an Emerging Pathogen Changes through Anuran Development

    Get PDF
    Ranaviruses have caused die-offs of amphibians across the globe. In North America, these pathogens cause more amphibian mortality events than any other pathogen. Field observations suggest that ranavirus epizootics in amphibian communities are common during metamorphosis, presumably due to changes in immune function. However, few controlled studies have compared the relative susceptibility of amphibians to ranaviruses across life stages. Our objectives were to measure differences in mortality and infection prevalence following exposure to ranavirus at four developmental stages and determine whether the differences were consistent among seven anuran species. Based on previous studies, we hypothesized that susceptibility to ranavirus would be greatest at metamorphosis. Our results did not support this hypothesis, as four of the species were most susceptible to ranavirus during the larval or hatchling stages. The embryo stage had the lowest susceptibility among species probably due to the protective membranous layers of the egg. Our results indicate that generalizations should be made cautiously about patterns of susceptibility to ranaviruses among amphibian developmental stages and species. Further, if early developmental stages of amphibians are susceptible to ranaviruses, the impact of ranavirus epizootic events may be greater than realized due to the greater difficulty of detecting morbid hatchlings and larvae compared to metamorphs

    Ranavirus Replication: Molecular, Cellular, and Immunological Events

    Full text link
    corecore