260 research outputs found

    Family Unification, Exotic States and Light Magnetic Monopoles

    Full text link
    Models with fermions in bifundamental representations can lead naturally to family unification as opposed to family replication. Such models typically predict (exotic) color singlet states with fractional electric charge, and magnetic monopoles with multiple Dirac charge. The exotics may be at the TeV scale, and relatively light magnetic monopoles (greater than about 10^7 GeV) can be present in the galaxy with abundance near the Parker bound. We focus on three family SU(4)XSU(3)XSU(3) models.Comment: 37 page

    The Van der Waals interaction of the hydrogen molecule - an exact local energy density functional

    Full text link
    We verify that the van der Waals interaction and hence all dispersion interactions for the hydrogen molecule given by: W"= -{A/R^6}-{B/R^8}-{C/R^10}- ..., in which R is the internuclear separation, are exactly soluble. The constants A=6.4990267..., B=124.3990835 ... and C=1135.2140398... (in Hartree units) first obtained approximately by Pauling and Beach (PB) [1] using a linear variational method, can be shown to be obtainable to any desired accuracy via our exact solution. In addition we shall show that a local energy density functional can be obtained, whose variational solution rederives the exact solution for this problem. This demonstrates explicitly that a static local density functional theory exists for this system. We conclude with remarks about generalising the method to other hydrogenic systems and also to helium.Comment: 11 pages, 13 figures and 28 reference

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    Random forest for gene selection and microarray data classification

    Get PDF
    A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. The option for biggest subset selection is done to assist researchers who intend to use the informative genes for further research. Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes with lowest out of bag error rates through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods

    Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose-Einstein condensates with attractive interactions

    Full text link
    The dynamical instabilities and ensuing dynamics of singly- and doubly-quantized vortex states of Bose-Einstein condensates with attractive interactions are investigated using full 3D numerical simulations of the Gross-Pitaevskii equation. With increasing the strength of attractive interactions, a series of dynamical instabilities such as quadrupole, dipole, octupole, and monopole instabilities emerge. The most prominent instability depends on the strength of interactions, the geometry of the trapping potential, and deviations from the axisymmetry due to external perturbations. Singly-quantized vortices split into two clusters and subsequently undergo split-merge cycles in a pancake-shaped trap, whereas the split fragments immediately collapse in a spherical trap. Doubly-quantized vortices are always unstable to disintegration of the vortex core. If we suddenly change the strength of interaction to within a certain range, the vortex splits into three clusters, and one of the clusters collapses after a few split-merge cycles. The vortex split can be observed using a current experimental setup of the MIT group.Comment: 11 pages, 10 figure

    The repulsive nature of naked singularities from the point of view of Quantum Mechanics

    Full text link
    We use the Dirac equation coupled to a background metric to examine what happens to quantum mechanical observables like the probability density and the radial current in the vicinity of a naked singularity of the Reissner-Nordstr\"{o}m type. We find that the wave function of the Dirac particle is regular in the point of the singularity. We show that the probability density is exactly zero at the singularity reflecting quantum-mechanically the repulsive nature of the naked singularity. Furthermore, the surface integral of the radial current over a sphere in the vicinity of the naked singularity turns out to be also zero.Comment: 11 page

    Modern topics in theoretical nuclear physics

    Full text link
    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde

    Natural Orbitals and BEC in traps, a diffusion Monte Carlo analysis

    Full text link
    We investigate the properties of hard core Bosons in harmonic traps over a wide range of densities. Bose-Einstein condensation is formulated using the one-body Density Matrix (OBDM) which is equally valid at low and high densities. The OBDM is calculated using diffusion Monte Carlo methods and it is diagonalized to obtain the "natural" single particle orbitals and their occupation, including the condensate fraction. At low Boson density, na3<10−5na^3 < 10^{-5}, where n=N/Vn = N/V and aa is the hard core diameter, the condensate is localized at the center of the trap. As na3na^3 increases, the condensate moves to the edges of the trap. At high density it is localized at the edges of the trap. At na3≀10−4na^3 \leq 10^{-4} the Gross-Pitaevskii theory of the condensate describes the whole system within 1%. At na3≈10−3na^3 \approx 10^{-3} corrections are 3% to the GP energy but 30% to the Bogoliubov prediction of the condensate depletion. At na3≳10−2na^3 \gtrsim 10^{-2}, mean field theory fails. At na3≳0.1na^3 \gtrsim 0.1, the Bosons behave more like a liquid 4^4He droplet than a trapped Boson gas.Comment: 13 pages, 14 figures, submitted Phys. Rev.
    • 

    corecore