1,639 research outputs found

    The Americanization of sport for development and peace: Examining American SDP intern experiences

    Get PDF
    This study expands the Sport for Development and Peace (SDP) research focusing on the impact of national values and ideas on SDP program implementation. As SDP interns are instrumental in implementing many SDP programs, it is important to identify how their national values and ideas affect their work in the field. The purpose of this qualitative study was to examine the experiences of Americans who had worked as SDP interns. Through the lens of Americanization, we examine the reproduction and distribution of values and ideas of American SDP interns working abroad. Semistructured interviews were conducted with 11 former American SDP interns to explore their perspectives and reflections on the work they carried out as American SDP interns. Throughout the interviews, American ideas rooted in neoliberalism, capitalism, and education appeared as conceptual influences that were woven into their SDP internship experience. The findings indicated that, in their role as American SDP interns, the participants were at once complicit in and resistant to reproducing inequitable power relations, constantly wrestling with personal ideologies and American sporting values that did not align with cultural and social norms of the host countries. Implications of this study emphasize the continued need for SDP analyses to identify and critically consider nation-specific values and ideas of SDP workers and their impact on the local implementation of SDP programs

    Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode

    Get PDF
    Pharmaceutical wastes are considered to be important pollutants even at low concentrations. In this regard, carbamazepine has received significant attention due to its negative effect on both ecosystem and human health. However, the need for acidic conditions severely hinders the use of conventional Fenton reagent reactions for the control and elimination of carbamazepine in wastewater effluents and drinking water influents. Herein, we report of the synthesis and use of flexible bifunctional nanoelectrocatalytic textile materials, Fe_3O_4-NP@CNF, for the effective degradation and complete mineralization of carbamazepine in water. The nonwoven porous structure of the composite binder-free Fe_3O_4-NP@CNF textile is used to generate H_2O_2 on the carbon nanofiber (CNF) substrate by O_2 reduction. In addition, ·OH radical is generated on the surface of the bonded Fe_3O_4 nanoparticles (NPs) at low applied potentials (−0.345 V). The Fe_3O_4-NPs are covalently bonded to the CNF textile support with a high degree of dispersion throughout the fiber matrix. The dispersion of the nanosized catalysts results in a higher catalytic reactivity than existing electro-Fenton systems. For example, the newly synthesized Fe_3O_4-NPs system uses an Fe loading that is 2 orders of magnitude less than existing electro-Fenton systems, coupled with a current efficiency that is higher than electrolysis using a boron-doped diamond electrode. Our test results show that this process can remove carbamazepine with high pseudo-first-order rate constants (e.g., 6.85 h^(–1)) and minimal energy consumption (0.239 kW·h/g carbamazepine). This combination leads to an efficient and sustainable electro-Fenton process

    Tank Pressure Control Experiment: Thermal Phenomena in Microgravity

    Get PDF
    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number

    Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs

    Get PDF
    Ex situ nonalloyed ohmic contacts were made to n- and p‐type GaAs using low‐temperature molecular beam epitaxy. For n‐type GaAs, Ag, and Ti/Au nonalloyed contacts displayed specific contact resistitivities of mid 10-7 ohm cm2. For p‐type GaAs, nonalloyed Ti/Au contacts with specific contact resistivities of about 10-7 ohm cm2 were obtained

    Synergism of mutant frequencies in the mouse lymphoma cell mutagenicity assay by binary mixtures of methyl methanesulfonate and ethyl methanesulfonate

    Full text link
    The effect of mixed mutagen exposures on the rate and type of induced mutants was studied in the L5178Y/TK+/- --> TK-/- mouse lymphoma cell mutagenicity assay. In this assay, exposure to ethyl methanesulfonate (EMS) results in more mutants that form large colonies than small colonies. Exposure to methyl methanesulfonate (MMS) results in more mutants that form small colonies than large colonies. Other reports in the literature suggest that large colony TK-/- mutants appear to result from small-scale, perhaps single-gene mutations, and that small-colony TK-/- mutants appear to be associated with chromosomal mutations. Treating cells for 4 h with simple, 2-component mixtures containing 6.45 [mu]g/ml MMS and either 261, 392, 560 or 712 [mu]g/ml EMS resulted in synergism of mutants at each mixture level. The frequencies of total mutants were synergized 12,20,35 and 72%, respectively, in mixed exposures with graded doses of EMS, above the sums of the mixture components. Small colony mutants were synergized to a greater extent than large colony mutants. The frequencies of small colony mutants in mixed exposures were increased 31, 54, 73 and 123%, respectively, while the frequencies of large colony mutants were increased -7, -6, 11 and 39%. Statistical analyses provide strong evidence of synergism (within the limits of the assay) for total and small-colony mutants at all doses of EMS tested, and for large-colony mutants above 400 [mu]g/ml EMS. Similar magnitudes of synergism resulted when other constant levels of MMS (4.30 or 8.60 [mu]g/ml) were mixed with the same graded doses of EMS. The degree of synergism was dependent on EMS concentration but not on MMS concentration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27116/1/0000108.pd

    HIV-1 Vpr Enhances Viral Burden by Facilitating Infection of Tissue Macrophages but Not Nondividing CD4+ T Cells

    Get PDF
    Prior experiments in explants of human lymphoid tissue have demonstrated that human immunodeficiency virus type 1 (HIV-1) productively infects diverse cellular targets including T cells and tissue macrophages. We sought to determine the specific contribution of macrophages and T cells to the overall viral burden within lymphoid tissue. To block infection of macrophages selectively while preserving infection of T cells, we used viruses deficient for viral protein R (Vpr) that exhibit profound replication defects in nondividing cells in vitro. We inoculated tonsil histocultures with matched pairs of congenic viruses that differed only by the presence of a wild-type or truncated vpr gene. Although these viruses exhibited no reduction in the infection or depletion of T cells, the ability of the Vpr-deficient R5 virus to infect tissue macrophages was severely impaired compared with matched wild-type R5 virus. Interestingly, the Vpr-deficient R5 virus also exhibited a 50% reduction in overall virus replication compared with its wild-type counterpart despite the fact that macrophages represent a small fraction of the potential targets of HIV-1 infection in these tissues. Collectively, these data highlight the importance of tissue macrophages in local viral burden and further implicate roles for CC chemokine receptor 5, macrophages, and Vpr in the life cycle and pathogenesis of HIV-1

    Hyperspectral Imaging for Burn Depth Assessment in an Animal Model

    Get PDF
    Differentiating between superficial and deep-dermal (DD) burns remains challenging. Superficial-dermal burns heal with conservative treatment; DD burns often require excision and skin grafting. Decision of surgical treatment is often delayed until burn depth is definitively identified. This study\u27s aim is to assess the ability of hyperspectral imaging (HSI) to differentiate burn depth. METHODS: Thermal injury of graded severity was generated on the dorsum of hairless mice with a heated brass rod. Perfusion and oxygenation parameters of injured skin were measured with HSI, a noninvasive method of diffuse reflectance spectroscopy, at 2 minutes, 1, 24, 48 and 72 hours after wounding. Burn depth was measured histologically in 12 mice from each burn group (n = 72) at 72 hours. RESULTS: Three levels of burn depth were verified histologically: intermediate-dermal (ID), DD, and full-thickness. At 24 hours post injury, total hemoglobin (tHb) increased by 67% and 16% in ID and DD burns, respectively. In contrast, tHb decreased to 36% of its original levels in full-thickness burns. Differences in deoxygenated and tHb among all groups were significant (P \u3c 0.001) at 24 hours post injury. CONCLUSIONS: HSI was able to differentiate among 3 discrete levels of burn injury. This is likely because of its correlation with skin perfusion: superficial burn injury causes an inflammatory response and increased perfusion to the burn site, whereas deeper burns destroy the dermal microvasculature and a decrease in perfusion follows. This study supports further investigation of HSI in early burn depth assessment

    Mipomersen, an Apolipoprotein B Synthesis Inhibitor, Reduces Atherogenic Lipoproteins in Patients With Severe Hypercholesterolemia at High Cardiovascular Risk A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    ObjectivesThis study sought to examine the efficacy and safety of mipomersen for reducing atherogenic lipids and lipoproteins in patients with hypercholesterolemia.BackgroundMany patients on lipid-lowering therapies remain unable to achieve target low-density lipoprotein (LDL) cholesterol levels. Mipomersen, an antisense oligonucleotide inhibitor of apolipoprotein B, reduces LDL cholesterol and atherogenic lipoproteins.MethodsThis randomized, double-blind, multicenter study enrolled 158 patients with baseline LDL cholesterol levels ≥100 mg/dl with, or at high risk for, coronary heart disease who were receiving maximally tolerated lipid-lowering therapy. Patients received weekly subcutaneous mipomersen 200 mg (n = 105) or placebo (n = 52) for 26 weeks, with a 24-week follow-up period. Randomization was stratified by type 2 diabetes status.ResultsSixty mipomersen and 44 placebo patients completed treatment. Mean baseline LDL cholesterol levels were 122.7 and 122.6 mg/dl in the placebo and mipomersen patients, respectively. Mipomersen reduced LDL cholesterol by −36.9% compared with placebo at −4.5% (p < 0.001). Target LDL cholesterol <100 mg/dl was attained in 76% of mipomersen and 38% of placebo patients. Mipomersen also significantly reduced apolipoprotein B (−38%) and lipoprotein(a) (−24%) (p < 0.001). Common adverse events included injection site reactions (78% with mipomersen, 31% with placebo) and flu-like symptoms (34% with mipomersen, 21% with placebo). Elevations in transaminases and liver fat also occurred in some patients, and these levels returned toward baseline after treatment cessation.ConclusionsMipomersen significantly reduced LDL cholesterol, apolipoprotein B, and lipoprotein(a) in patients with hypercholesterolemia with, or at risk for, coronary heart disease not controlled by existing therapies. (Safety and Efficacy of Mipomersen [ISIS 301012] as Add-On Therapy in High Risk Hypercholesterolemic Patients; NCT00770146
    corecore