602 research outputs found

    Wave climatology in the Apostle Islands, Lake Superior

    Full text link
    The wave climate of the Apostle Islands in Lake Superior for 35 year (1979–2013) was hindcast and examined using a third‐generation spectral wave model. Wave measurements within the Apostle Islands and offshore NOAA buoys were used to validate the model. Statistics of the significant wave height, peak wave period, and mean wave direction were computed to reveal the spatial variability of wave properties within the archipelago for average and extreme events. Extreme value analysis was performed to estimate the significant wave height at the 1, 10, and 100 year return periods. Significant wave heights in the interior areas of the islands vary spatially but are approximately half those immediately offshore of the islands. Due to reduced winter ice cover and a clockwise shift in wind direction over the hindcast period, long‐term trend analysis indicates an increasing trend of significant wave heights statistics by as much as 2% per year, which is approximately an order of magnitude greater than similar analysis performed in the global ocean for areas unaffected by ice. Two scientific questions related to wave climate are addressed. First, the wave climate change due to the relative role of changing wind fields or ice covers over the past 35 years was revealed. Second, potential bluff erosion affected by the change of wave climate and the trend of lower water levels in the Apostle Islands, Lake Superior was examined.Key Points:Wave climate of the Apostle Islands in Lake Superior for 35 year was hindcastStatistics of the wave climate reveal the spatial variability of wave propertiesAn increasing trend of SWH is found due to climate changePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113131/1/jgrc21305.pd

    Soluble histone H2AX is induced by DNA replication stress and sensitizes cells to undergo apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin-associated histone H2AX is a key regulator of the cellular responses to DNA damage. However, non-nucleosomal functions of histone H2AX are poorly characterized. We have recently shown that soluble H2AX can trigger apoptosis but the mechanisms leading to non-chromatin-associated H2AX are unclear. Here, we tested whether stalling of DNA replication, a common event in cancer cells and the underlying mechanism of various chemotherapeutic agents, can trigger increased soluble H2AX.</p> <p>Results</p> <p>Transient overexpression of H2AX was found to lead to a detectable fraction of soluble H2AX and was associated with increased apoptosis. This effect was enhanced by the induction of DNA replication stress using the DNA polymerase α inhibitor aphidicolin. Cells manipulated to stably express H2AX did not contain soluble H2AX, however, short-term treatment with aphidicolin (1 h) resulted in detectable amounts of H2AX in the soluble nuclear fraction and enhanced apoptosis. Similarly, soluble endogenous H2AX was detected under these conditions. We found that excessive soluble H2AX causes chromatin aggregation and inhibition of ongoing gene transcription as evidenced by the redistribution and/or loss of active RNA polymerase II as well as the transcriptional co-activators CBP and p300.</p> <p>Conclusion</p> <p>Taken together, these results show that DNA replication stress rapidly leads to increased soluble H2AX and that non-chromatin-associated H2AX can sensitize cells to undergo apoptosis. Our findings encourage further studies to explore H2AX and the cellular pathways that control its expression as anti-cancer drug targets.</p

    A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances

    Get PDF
    Xin G, Lin H-C, Smith J, Cebe O, Mistry M. A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances. In: IEEE/RSJ Int. Conf. on Robotics and Automation. 2018.Legged robots have many potential applications in real-world scenarios where the tasks are too dangerous for humans, and compliance is needed to protect the system against external disturbances and impacts. In this paper, we propose a model-based controller for hierarchical tasks of legged systems subject to external disturbance. The control framework is based on projected inverse dynamics controller, such that the control law is decomposed into two orthogonal subspaces, i.e., the constrained and the unconstrained subspaces. The unconstrained component controls multiple desired tasks with impedance responses. The constrained space controller maintains the contact subject to unknown external disturbances, without the use of any force/torque sensing at the contact points. By explicitly modelling the external force, our controller is robust to external disturbances and errors arising from incorrect dynamic model information. The main contributions of this paper include (1) incorporating an impedance controller to control external disturbances and allow impedance shaping to adjust the behaviour of the motion under external disturbances, (2) optimising contact forces within the constrained subspace that also takes into account the external disturbances without using force/torque sensors at the contact locations. The techniques are evaluated on the ANYmal quadruped platform under a variety of scenarios

    Silicon-[18F]Fluorine Radiochemistry: Basics, Applications and Challenges

    Get PDF
    Silicon-[18F]Fluorine (Si-18F) radiochemistry has recently emerged alongside other unconventional approaches such as aluminum-F-18 and boron-F-18 based labeling strategies, reshaping the landscape of modern F-18-radiochemistry. All these novel methodologies are driven by the demand for more convenient F-18-labeling procedures to further disseminate one of the most sophisticated imaging technologies, Positron Emission Tomography (PET). The PET methodology requires special radionuclides such as F-18 (one of the most prominent examples) to be introduced into bioactive molecules. Si-F-18 radiochemistry contributed greatly towards the development of new radiopharmaceuticals for PET imaging. Herein, we describe the radiochemical basics of Si-F-18 bond formation, the application of Si-F-18 tracers for PET imaging, and additionally, the inherent chemical intricacies of this methodology

    A Projected Inverse Dynamics Approach for Multi-arm Cartesian Impedance Control

    Get PDF
    Lin H-C, Smith J, Kouhkiloui Babarahmati K, Dehio N, Mistry M. A Projected Inverse Dynamics Approach for Multi-arm Cartesian Impedance Control. In: IEEE/RSJ Int. Conf. on Robotics and Automation. 2018.We propose a model-based control framework for multi-arm manipulation of a rigid object subject to external disturbances. The control framework, based on projected inverse dynamics, decomposes the control law into constrained and unconstrained subspaces. Unconstrained components accomplish the motion task with a desired 6-DOF Cartesian impedance behaviour against external disturbances. Meanwhile, the constrained component enforces contact and friction constraints by optimising for contact forces within the constrained subspace. External disturbances are explicitly compensated for without using force/torque sensors at the contact points. The approach is evaluated on a dual-arm platform manipulating a rigid object while coping with unknown object dynamics and human interaction

    Bounded haptic teleoperation of a quadruped robot’s foot posture for sensing and manipulation

    Get PDF
    This paper presents a control framework to teleoperate a quadruped robot's foot for operator-guided haptic exploration of the environment. Since one leg of a quadruped robot typically only has 3 actuated degrees of freedom (DoFs), the torso is employed to assist foot posture control via a hierarchical whole-body controller. The foot and torso postures are controlled by two analytical Cartesian impedance controllers cascaded by a null space projector. The contact forces acting on supporting feet are optimized by quadratic programming (QP). The foot's Cartesian impedance controller may also estimate contact forces from trajectory tracking errors, and relay the force-feedback to the operator. A 7D haptic joystick, Sigma.7, transmits motion commands to the quadruped robot ANYmal, and renders the force feedback. Furthermore, the joystick's motion is bounded by mapping the foot's feasible force polytope constrained by the friction cones and torque limits in order to prevent the operator from driving the robot to slipping or falling over. Experimental results demonstrate the efficiency of the proposed framework.Comment: Under review. Video Available at https://www.youtube.com/watch?v=htI8202vfe

    Lake ice simulation using a 3D unstructured grid model

    Get PDF
    We develop a single-class ice and snow model embedded inside a 3D hydrodynamic model on unstructured grids and apply it to lake studies using highly variable mesh resolution. The model is able to reasonably capture the ice fields observed in both small and large lakes. For the first time, we attempt simulation of ice processes on very small scales (~ 1 m). Physically sound results are obtained at the expense of moderately increased computational cost, although more rigorous validation nearshore is needed due to lack of observation. We also outline challenges on developing new process-based capabilities for accurately simulating nearshore ice

    Fractal Impedance for Passive Controllers

    Get PDF
    There is increasing interest in control frameworks capable of moving robots from industrial cages to unstructured environments and coexisting with humans. Despite significant improvement in some specific applications (e.g., medical robotics), there is still the need for a general control framework that improves interaction robustness and motion dynamics. Passive controllers show promising results in this direction; however, they often rely on virtual energy tanks that can guarantee passivity as long as they do not run out of energy. In this paper, a fractal attractor is proposed to implement a variable impedance controller that can retain passivity without relying on energy tanks. The controller generates a fractal attractor around the desired state using an asymptotic stable potential field, making the controller robust to discretization and numerical integration errors. The results prove that it can accurately track both trajectories and end-effector forces during interaction. Therefore, these properties make the controller ideal for applications requiring robust dynamic interaction at the end-effector.Comment: Video Available at https://youtu.be/S06_hqn3Nv
    corecore