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Abstract There is increasing interest in control frame-
works capable of moving robots from industrial cages
to unstructured environments and coexisting with
humans. Despite significant improvement in some spe-
cific applications (e.g., medical robotics), there is still
the need for a general control framework that improves
interaction robustness and motion dynamics. Passive
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controllers show promising results in this direction;
however, they often rely on virtual energy tanks that
can guarantee passivity as long as they do not run out
of energy. In this paper, a Fractal Attractor is proposed
to implement a variable impedance controller that
can retain passivity without relying on energy tanks.
The controller generates a Fractal Attractor around
the desired state using an asymptotic stable potential
field, making the controller robust to discretization and
numerical integration errors. The results prove that it
can accurately track both trajectories and end-effector
forces during interaction. Therefore, these properties
make the controller ideal for applications requiring
robust dynamic interaction at the end-effector.
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1 Introduction

Robots have been traditionally deployed in highly
structured environments with either minimal or heavily
controlled human-robot interaction. Their introduction
into industries, such as health care, with complex inter-
active behaviour has revealed the limitations of tradi-
tional industrial controllers. The impedance controller
[1–6] is a widespread technique enabling robots to
interactwith uncertain environments. This control tech-
nique relies on inverse dynamics modelling to drive the
robot to act with a desired mechanical impedance, such
as a linear Mass-Spring-Damper system [1,7]. Never-
theless, the controller’s stability still highly depends
on adequate gain tuning, which may be challenging
for dynamically intensive tasks. Examples are environ-
ments that require adaptive trajectories and/or variable
impedance gains [8], as well as tasks with uncertain
end-effector contact against other agents or the envi-
ronment (e.g., polishing, physical human-robot collab-
oration, etc.) [3–6,9–13]. Such tasks pose various chal-
lenges to robots’ controllers that currently require an
accurate model of contact conditions to ensure system
stability.

Variable impedance controllers have been widely
explored to address these issues. Ensuring stability
with time-variant gains is non-trivial [8,9,13–15]; the
stability of the system depends not only on the gain
profile selected but also on how they are updated.
The intrinsic unpredictability of unstructured environ-
ments further complicates the process. The variable
stiffness controller proposed in [16] addresses stabil-
ity but it is not robust to unknown external perturba-
tions. Iterative and adaptive control methods have also
been proposed to compensate for the external perturba-
tions by guaranteeing interaction stability [11,17–19].
These learning methods are task-specific and do not
allow the user any tuning authority on these profiles.
Another option to obtain more dexterous motion relies
on using force/torque feedback from the end-effector,
which is not always viable and is extremely suscepti-
ble to vibrations [20–23]. In synthesis, the main issue
is that these controllers require accurate models of the
external dynamics for stability. Therefore, the robot’s
stability is highly dependent on environmental mod-
elling, which is difficult to obtain in real-world scenar-
ios.

Passive controllers have been presented as a viable
solution to these problems since their stability is inde-

pendent of the environmental interaction, in most
practical cases [6,24–27]. Passive systems are stable
because they do not produce energy, but redistribute it
at a cost. Virtual energy tanks have also been imple-
mented to ensure stability of an active controller by
measuring and storing the non-conservative energy via
a virtual spring (i.e., integrator) [24–29]. Thus, their
effectiveness is dependent on the ability of accurately
tracking the energy exchanged by the controllers’ non-
conservative elements (e.g., damping), and their per-
formances are heavily challenged during adaptation
to highly variable environments that may consume all
the energy accumulated in their tanks [30–32]. Energy
tank controllers have also been deployed to define
energy/power-based safety metrics that allow tuning of
the robot impedance, as reported for 1-DoF and multi-
DoF platforms [33,34]. Another benefit of passive con-
trollers is their robustness to loss of information over
data transmission, and system discretization [35]. The
main limitations of virtual energy tank controllers are
the performance dependency on the residual energy in
their tanks, and the need of an integrator to account
for non-conservative components. The latter becomes
relevant in low-bandwidth controllers due to degraded
accuracy of discrete integration.

This paper proposes a passive impedance controller
where its anisotropic behaviour generates a stable
attractor around the desired robot pose, shown in Fig. 1.
The main contributions of the proposed approach are:

1. Introducing the fractal attractor to design an asymp-
totically stable impedance controller.

2. Removing the integrator required to achieve con-
troller passivity in variable stiffness impedance
controllers.

3. Demonstrating robustness of the proposed con-
troller to low-bandwidth feedback.

The manuscript is organized as follows: the Method
discusses the design of the proposed controller; The
Experimental Validation describes the experiments
conducted using a Panda 7-DoF Arm (Franka Emika
GmbH, DE). The Results provides the results of the
experiments. Finally, we analyse the results and draw
the conclusions inDiscussion andConclusions, respec-
tively.
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Fig. 1 Autonomous trajectories in the phase space of a Fractal
Attractor

2 Method

The Fractal Impedance Controller (FIC) is a new
approach to passive control, which relies upon a state-
dependent impedance profile and a Fractal Attractor.
The impedance profile determines the robot force and
trajectory tracking characteristics, while the Fractal
Attractor guarantees smooth autonomous trajectories
and stability. In other words, the chosen impedance
profile determines the effort the controller opposes to
perturbations of the system state. The Fractal Attractor
ensures a safe recovery after the perturbation terminates
by identifying the harmonic trajectory capable of con-
suming all the energy accumulated in the Impedance
Stiffness (Kd) during divergence.

2.1 State-dependent variable impedance

A Cartesian impedance controller drives the end-
effector of a robot to generate desired system dynamics
[1,2], such as the following:

�d
¨̃X + Dd

˙̃X + Kd X̃ = Wext + WID, (1)

where �d , Dd and Kd are the desired Cartesian iner-
tia, damping and stiffness matrices, respectively. Note
that within the context of this paper, we use upper-case
letters to indicate vectors andmatrices, while the corre-
sponding lower-case letters (e.g., kd ) represent a scalar
component within the vector or matrix. Wext is the
external wrench applied to the end-effector, andWID is
the inverse dynamics compensation. X̃ = Xd−X is the

error between the desired pose Xd and the current pose

X , and ˙̃X , ¨̃X are the first and second time derivatives
of X̃ , respectively.

Suppose we consider a passive controller without

reference velocity ( ˙̃Xd = 0) and acceleration ( ¨̃Xd =
0), which implies that the controller is always pulling
the robot towards an equilibrium point. This assump-
tion is essential for system stability in all control archi-
tectures that need to be within a region of attraction of a
stable point, but it is generally accounted for at the plan-
ning stage [36]. As a consequence, such a controller
would not rely on the planner for stability, but may
compromise tracking performance. The introduction
of a state-dependent nonlinear stiffness profile com-
pensates for the loss of the tracking performance by
generating a virtual boundary surrounding the desired
pose and autonomously adjusting the robot’s rigidity
to control task accuracy. The proposed stiffness profile
for a single DoF of task-space is as follows:

kd(x̃) = kconst + kvar(x̃)

kvar =

⎧
⎪⎪⎨

⎪⎪⎩

wmax

|x̃ | − kconst, if |x̃ | > xB

e(β x̃)2 , o/w

β2 = ln (kmax − kconst)

x2B
=

ln

(
wmax

xB
− kconst

)

x2B
(2)

where kd is the i th-element of the block diagonal stiff-
ness matrix Kd ∈ R

6×6. kconst is a fixed constant stiff-
ness. wmax is the maximum exertable task-space force
or torque for a single DoF and is determined by the
robot’s physical properties. xB is the virtual boundary
point where the exerted force saturates. As shown in
Fig. 2 the proposed nonlinear stiffness profile starts
with a linear region around zero, followed by an expo-
nential growth until the force saturation is reached at
x̃ = xB and, consequentially, the stiffness starts to
decrease with the increase of the displacement in order
to maintain a constant maximal force.

In summary, the proposed controller works with the
following assumptions:

1. The desired velocity vector (Ẋd) and acceleration
(Ẍd) are equal to 0, determining that every refer-
ence state of the controller is an equilibrium point.

2. �d is equal to the task-space inertia of the robot.
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Fig. 2 Nonlinear stiffness profile used in the fractal impedance
controller. Stiffness starts at kconst near zero and exponentially
increases until reaching maximum stiffness kmax = wmax/xB .
Beyond xB stiffness decays in order to maintain a maximal force

3. The spring potential energy (E) function which is
unbounded, explicitly depends only on pose errors
(i.e., E = f (X̃)).

4. The controller energy is a uniform continuous func-
tion which has a bounded derivative (i.e., a Lips-
chitz function).

2.2 Fractal attractor

The Fractal Attractor generates a global region of
attraction surrounding the desired state and determines
the smooth autonomous trajectories of the controller. It
is worth mentioning that Fractal Attractor is the name
we give to the stable dynamics generated by the pro-
posed method. The name was chosen because it is a
strange attractor. These type of systems have a fractal
structure due to their state dimensionality being a non-
integer rational number [37], hence the name Fractal
Attractor. The proposed system differs from the tra-
ditional formulations of strange attractors because it
is defined in an algorithmic form rather than paramet-
ric nonlinear dynamics equations. This implementation
allows changing the system dynamics by selecting a
different force profile, resulting in more intuitive pro-
gramming of the interaction dynamics.

Away demonstrate that the system is a fractal is ver-
ifying that the point-wise dimensionality of its Cantor
set is a rational number [37]. The point-wise dimen-
sionality is determined numerically by counting the
number of states that are progressively encompassed
by gradually increasing an isotropic neighbourhood of
a chosenpoint in the systemphase-state [37]. Thepoint-

wise dimensionality for the proposed method (Fig. 3)
is N(x̃=0, ẋ=0) ∝ (

0.5ε2+ 0.5ε2−γ , γ ∈ (0, 1] ⊂ R
)
,

where ε is the radius of an isotropic neighbour of the
considered state. It is smaller than the two-dimensional
Cartesian space (N(x̃=0, ẋ=0) ∝ ε2) [37].

Proof The proposed attractor has the same dimension-
ality of the Cartesian Space during divergence (Qi and
Qiii in Fig. 3c), where it acts as an oscillator around
the null state (i.e., x̃ = 0, ẋ = 0), implying that a
point for every state enters the neighbourhood every
time is increased. In contrast, it has a smaller dimen-
sionality during convergence (Qii and Qiv in Fig. 3c),
where the attractor trajectory depends by the residual
displacement at the at the switching condition (ẋ = 0).
Therefore, even accounting for a system capable of
an infinite displacement, the number of points enter-
ing an infinitesimally small neighbourhood of the null
state is limited to the set displacements outside it. Con-
sequently, the number of system trajectories entering
the neighbourhood is decreased by one every time it is
increased in dimension.

To formalise what explained in the previous para-
graph, let’s consider a circumference in phase space
(x̃, ẋ) and increase its radius using unit step (�i = 1)
to ε (i.e., i ∈ [0, ε] ⊂ N). The point-wise dimension-
ality for semicircle in divergence is:

0.5
ε∑

i=1

ε = 0.5ε
ε∑

i=1

1 = 0.5ε2

The point-wise dimensionality for the semicircle of
convergence has to account for the decrease number
of available trajectories for every increase leading to:

0.5
ε∑

i=1

ε − i = 0.5ε
ε∑

i=1

(

1 − i

ε

)

= 0.5ε2−γ (3)

where γ ∈ (0, 1] ⊂ R describe reduction in dimen-
sionality. The value of gamma depends on the maxi-
mumdimension of the neighborhood (ε) and the chosen
discretisation (�i), which asymptotically converges to
zero when (�i → 0, ε → ∞). This can be easily
verified rewriting Eq. (3) as:

0.5ε
ε∑

i=1

(

1 − i

ε

)

= 5ε
ε∑

i=1

1 − 5ε
ε∑

i=1

1 − 0.5
ε∑

i=1
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i = 0.5ε2 − 0.5
ε∑

i=1

i

and studying its limits for ε → ∞:

lim
ε→∞ 0.5ε2 − 0.5

ε∑

i=1

i = 0.5(∞2 − ∞) = ∞2

The total point-wise dimensionality of the Cantor set
is obtained by adding the semicircle together.

N(x̃=0, ẋ=0) ∝ 0.5ε2 + 0.5ε
ε∑

i=1

(

1 − i

ε

)

= (0.5ε2 + 0.5ε2−γ ) (4)

��
The attractor dynamics is defined to redistribute

the potential energy accumulated in the controller to
asymptotically return to the desired end-effector state
using a smooth trajectory. The proposed method is
based on the assumption that the energy reservoir is
the controller’s nonlinear stiffness. Consequently, the
energy that the robot can release into the environment
is upper-bounded by the potential energy accumulated
in the controller. The Fractal Attractor also limits the
controller power Ė ; thus, guaranteeing global stability
in fixed-base robots.

Energy redistribution is achievedby altering the con-
troller’s impedance when the end-effector starts to con-
verge toward the desired pose. To do so, an impedance
ZKc is added in series to the desired impedance
ZKd , as shown in Fig. 4a. Subsequently, the original
impedance ZKd is restored either when the system
reaches the desired state or enters a new divergence
phase. The impedance switch occurs at every diver-
gence/convergence boundary, as exemplified in Fig. 4.

Figure 3 describes the phase space for a 1-DoF
attractor generated by the controller without damping.
The divergence phases (quadrants Qi and Qiii) have
an impedance equal to ZKd . The convergence phases
(quadrants Qii and Qiv) have an impedance equal to
ZKd + ZKc . Figure 3c shows a sample trajectory mov-
ing clockwise that branches in quadrant Qiv into an
ideal behaviour and a perturbed behaviour.

The switching behaviour is implemented using a
hard-switch (s = 0, 1) and is based on the architecture
shown Fig. 4 and proposed by Swift et al. [38]. In our
case the switch is activated by the following condition
(independently for each task-space DoF):

Fig. 3 a Energy associated with autonomous trajectories of the
Fractal Attractor. b The phase portraits show that the attractor
topology scales based on the energy accumulated in the controller
spring, but they do not change in shape. c Starting from the first
quadrant of the Cartesian plane Qi : the environment perturbs the
end-effector. When the end-effector is released and inverts its
motion (Qiv), a controller switch is triggered with impedance
matched to restore the end-effector to the origin (green line).
However, if extra energy is added from the environment (dashed
black line) the trajectory will move into Qiii , triggering another
controller switch and restoring the original impedance.When the
trajectory reaches Qii , impedance is againmatched to extract the
residual energy. (Color figure online)
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Fig. 4 a The environment (Eenv) introduces the energy in the
robot during divergence, following the linemarked by red arrows.
This energy (EIn) is accumulated in the stiffness component
of the robot impedance (ZKd ). During convergence, the robot
releases the energy (EOut) through the line marked by green
arrows, engaging ZKc in series to ZKd . b The activation of Cdiv
(impedance control in divergence phase) and Cconv (passivity
control in convergence phase) is performed by changing S, as
described in Eq. (5). (Color figure online)

{
s = 1 if ẋ = 0 ∨ sgn(x̃) = sgn(ẋ)
s = 0 o/w

(5)

where s = 1 denotes the divergent phase and s = 0
denotes the convergent phase for the considered DoF.
When s = 1 the stiffness of the impedance con-
troller Cdiv is equal to kd(x̃) as in Eq. (2). At the
moment s becomes 0, the impedance controller Cconv

is derived by applying the conservation of energy prin-
ciple to ensure the controller’s passivity. The updated
impedance redistributes the accumulated energy, using
half for acceleration towards the equilibrium point and
the other half for deceleration once the position error
has been halved. Thus, it produces balanced acceler-
ation and deceleration phases and reduces the peak
control torques. The mathematical formulation of the
stiffness profile for the controller Cconv is obtained by
applying the conservation of energybetween the energy
accumulated in the robot stiffness at the beginning of
convergence (EIn) and the energy that will be released

during convergence (EOut) for each task-space DoF:

EIn = ∫
kd (x̃) x̃ d x̃

EOut = 2
k

′
total x̃

2
mid

2
= k

′
total x̃

2
mid

Passivity �⇒ EIn ≥ EOut

k
′
total =

(
1

x̃2mid

)

EIn =
(

4

x̃2max

)

EIn

(6)

where x̃max is the displacement reached at the moment
of switch from s = 1 to s = 0, and x̃mid is the midpoint
between x̃max and xd . Note that k

′
total in Eq. (6) assumes

the spring’s equilibrium point is moved to x̃mid during
convergence. Rather we maintain xd as the equilibrium
point by introducing the following nonlinear stiffness:

ktotal(x̃) = k
′
total

(
0.5x̃max − x̃

x̃

)

(7)

which satisfies the condition:

ktotal x̃ = k
′
total x̃mid , ∀ x̃ ∈ (0, x̃max)

Equation (6) imposes the controller passivity,which is a
sufficient condition for stability.Note that the controller
does not require damping in order to dissipate energy.

Finally, the FIC is added together with dynamics
compensation and a null space controller term to obtain
the robot control torques (τctrl) as described in Algo-
rithm 1; where q is the joint configuration vector, q̇ is
the joint velocity vector, M(q) is inertia matrix, J (q)

is the Jacobian, G(q) is the gravity compensation, and
tC(q, q̇) is the Coriolis matrix.

Algorithm 1 Fractal Impedance Control
1 for i ∈ [1, 6] ⊂ N do
2 if diverging from Xd,i (Si = 1) do
3 Kii = Kd ,i i (Equation (2))
4 else do
5 Kii = Ktotal,i i (Equation (7))
6 end
7 end
8 �(q) = (JM−1 J T )

−1

9 J̄ T = (JM−1 J T )
−1

JM−1

10 Wctrl = K X̃ + D ˙̃X + �(q)(JM−1C(q, q̇)q̇ − J̇ q̇) + G(q)

11 τctrl = J T Wctrl + (I − J T J̄ T )τnull

2.3 Lyapunov stability analysis

The proposed controller is characterised by a non-
smooth piece-wise energy manifold with a time-
invariant topology, as described by Eq. (6). In other
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words, the systemdynamics is deterministic and chang-
ing the controller gains online does not affect either
the manifold regularity or the fact that the system
energy flow is always converging to the null state
(x̃ = 0, ẋ = 0). This simplifies the stability analysis
as it implies that changing gains are just an alteration of
the initial condition. Furthermore, the intrinsic damp-
ing can be assumed to be zerowithout loss of generality
in the proposed controller. Let us now consider the con-
troller’s autonomous dynamics for a monodimensional
system:
{

λ(x)ẍ + λ̇(x)ẋ + kd x̃ = 0 Divergence
λ(x)ẍ + λ̇(x)ẋ + ktotal x̃ = 0 Convergence

(8)

where λ(x) is the task-space inertia. λ̇(x)ẋ are the Cori-
olis and Centrifugal forces [36]. A valid Lyapunov’s
candidate is:
⎧
⎪⎪⎨

⎪⎪⎩

Vdiv = ẋ T λ(x)ẋ

2
+

∫

kd x̃ d x̃

Vcon = ẋ T λ(x)ẋ

2
+ x̃ T ktotal x̃

2
+

∫ x̃max
0 kd x̃ d x̃

2

(9)

Time derivative of V is:{
V̇div = (λ(x)ẍ + λ̇(x)ẋ + kd x̃)ẋ = 0

V̇con = (λ(x)ẍ + λ̇(x)ẋ + ktotal x̃)ẋ = 0
(10)

Equations (9) and (10) prove that the two pieces that
composeourmanifold are stable.However, Lyapunov’s
stability for non-smooth systems also requires to verify
that the candidate is a Lipschitz function,which implies
V exists and has a bounded finite derivative also at the
transition point. To verify the continuity condition for
the Lyapunov function, the limits of the two continuous
functions at the switching conditions, occurring for ẋ =
0, should be the same value.When the switching occurs
for x̃ �= 0, this is guaranteed by Eq. (7). On the other
hand, such equality needs to be verified for x̃ = 0:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
x̃→0
ẋ→0

Vdiv =
∫

kd x̃ d x̃ = 0

lim
x̃→0
ẋ→0

Vconv = x̃ T ktotal x̃

2
+

∫ x̃max

0
kd x̃ d x̃

=
(∫ x̃max

0
kd x̃ − kd x̃ d x̃

)

= 0

(11)

To verify that V is radially unbounded integrating the
energy associated with Kd in Eq. (2).

E =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e(β x̃)2

2β
+ kconst x̃2

2
, |x̃ | ≤ xB

wmax x̃ + e(β x̃B)2

2β
+ kconst x̃2B

2
, o/w

(12)

The controller energy is radially unbounded (i.e., E →
∞ if |x | → ∞), and consequentially also V [Eq. (9)]
is radially unbounded.

lim
x̃max→∞

Vdiv(x) = E(x) =
∫ ∞

0
kd x̃ d x̃ = ∞

Furthermore, the V̇ = 0 in both the transition states
(x̃max) and (ẋ = 0). Therefore, the controller respects
all the required the stability conditions.

2.4 FIC intrinsic robustness to low-bandwidth
feedback

The FIC generates a conservative field with asymptot-
ically stable autonomous trajectories. Thus, the attrac-
tor energy is path independent. As a consequence, the
proposed controller is intrinsically robust to discretisa-
tion, model errors and noise. On the other hand, this
is not valid for virtual energy tank methods which rely
on an integrator to track the energy exchanged by the
controller to achieve passivity. To verify our claim we
analyse the computation of energy exchanged by the
FIC and a task-space mass-spring-damper impedance
controller (i.e., PID in velocity). Consequently, the pro-
portional, integral, and derivative terms are the damp-
ing, the stiffness, and the inertia, respectively.

The mechanical work of a mono-dimensional FIC
is equal to the difference in potential energy between
the two states (i.e, A and B):

�EFIC =
∫ B

A
f (x̃)dS =

∫ B

A
f (x̃) ˙̃xdt

=
∫ B

A
f (x̃)dx = E(B) − E(A) (13)

where E is the energy of associated with the controller
state, and reported in Eq. (12). As a consequence, the
integral is path independent, and the evaluation of the
controller energy is unaffected by the sampling time
in discrete systems. Let’s now consider the mechanical
work of an impedance controller using constant gains:

�EIC =
∫ B

A
f (x̃, ˙̃x, ¨̃x)dS =

∫ B

A
fD( ¨̃x, ˙̃x)dS

+
∫ B

A
fP( ˙̃x)dS +

∫ B

A
fI(x̃)dS

= kD

∫ tf

0

¨̃x ˙̃xdt + kP

∫ tf

0

˙̃x ˙̃xdt + kI
x̃

2

∣
∣
∣
∣

B

A

(14)

where tf is the final time of the trajectory. kD, kP and kI
are inertia, damping and stiffness of the controller. As
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kI is a conservative component, it is path independent
and unaffected by switching to discrete time systems.
However, this is not valid for both inertia and damping,
which are both trajectory dependent. Thus, the calcu-
lation of mechanical work for an impedance controller
depends on the chosen discretion, and will always be
an approximation of the effective work in Eq. (14). For
example, let’s consider the non-conservative compo-
nents of the impedance controller’s mechanical work
and apply a zero-order hold time discretisation.

�E−
IC = kD

B∑

A

¨̃x�x̃ + kP

B∑

A

˙̃x�x̃

= kD

tf∑

t=0

¨̃x(t)(x̃(t + �t) − x̃(t))�t

+ kP

tf∑

t=0

˙̃x (t) (x̃ (t + �t) − x̃ (t)) �t (15)

It shall be noted that we have assumed for simplicity
that the time needed to move between A → B is a
multiple of the sampling time for all the selected �t .
The estimation of the energy can be improvedwith state
estimators. However, their accuracy will be always be
compromised by a low sampling frequency (Fig. 5),
model errors and noise.

3 Experimental validation

The experiments are designed to validate if the pro-
posed controller retains the desirable characteristics
andperformanceof impedance controllerswhilst reduc-
ing some of its shortcomings. In other words, wewould
like to retain the interaction robustness of impedance
controllers, while being able to adjust online the trade-
off between compliance and tracking accuracy.

A 7-DoF Panda robot manipulator from Franka
Emika is used for the experiments where the controller
damping is always set to zero. During contact exper-
iments, a PTFE sheet is attached to the end-effector
to reduce sliding friction. An ATI Gamma SI-130-10
force/torque (F/T) sensor, mounted at the end-effector
of the Panda, records the interaction forces but is not
used in the controller.

1 2 3 4
0

5

10

15

20

25

30

Fig. 5 �EIC for a system (kD = 1kg, kP = 1Nm−1 ) tracking
the trajectory x(t) = t3+ t2+ t for 1 s at different sampling rates
are compared against the expected reference value computed at
a frequency of 10 kHz. The system energy (E) computed with
the different samplings of the same signal shows an error that
increases with the reduction of the bandwidth. The drift of the
energy values reveals that integration errors becomes relevant
for low-bandwidth controllers even for simple ideal dynamics
(absence of both model errors and noise)

3.1 End-effector pose tracking before controller
calibration

Diagonal gain matrices are used for the constant stiff-
ness gains in Eq. (2). The values of kconst are set to
150 Nm(−1) for linear degrees of freedom(DoF)and 5
Nm rad(−1) for the angular DoF. We also test the pro-
posed impedance profile on a traditional impedance
controller [Eq. (1)] by turning off the Fractal Attractor
(stiffness set to Eq. (2) during both convergence and
divergence). However, the high stiffness values may
render the manipulator unsafe and trigger the Panda
safety mechanisms, as shown in the attached video.
Therefore, it is not possible to run a comparison with
a traditional impedance controller using the nonlinear
stiffness of Eq. (2).

3.1.1 Static target

The initial configuration of the end-effector is set to
Xd = [0.5 0 0.5 − π 0 0]T (m or rad), and the end-
effector is randomly perturbed by a human operator
15 times. The robot’s recovery behaviour is recorded.
The initial virtual boundaries, controlled by tuning the
nonlinear stiffness profile in Eq. (2), are as follows:
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XB,1:3 = 0.05m and XB,4:6 = 0.1746rad, unless dif-

ferently stated. The mean ¯̃X , standard deviation σ , and
the RMSE of the end-effector error are used to evaluate
the system accuracy. The mean and standard deviation
of the convergence time after a perturbation are com-
puted to evaluate the recovery behaviour of the con-
troller.

3.1.2 Trajectory tracking

We evaluate the robustness of the proposed method to
track a desired trajectory when the end-effector is per-
turbed. The desired periodic trajectory, on y-axis, has
amplitude ±0.25m and period T = 40s. Fifteen man-
ually generated perturbations of the end-effector are
used for this evaluation. The mean and the standard
deviation of RMSE for X̃ are computed to evaluate
the controller tracking performance. The convergence
time mean and standard deviation are also measured to
evaluate the performance of the controller after each
perturbation.

3.2 End-effector pose tracking and forward force
control after controller calibration

Despite the controller allowing global stability, each
physical system has marginal stability due to its lim-
ited finite properties, such as power and band-pass
limits. Thus, within the context of this method, con-
troller calibration refers to the process of identifying
the upper-bounds of the controller’s parameters that can
be applied without exceeding the physical properties of
the robot within its work-space. We set the damping to
zero and then evaluate the maximum force that can be
exerted without losing stability. It is worth noting that
the value of force would not precisely correspond to
the amount of force exerted on the end-effector due to
the presence of model errors. The authors would like
to remark that these calibrations are both system and
impedance profile specific.

The following is the calibration process used to iden-
tify the maximum force that can be applied for a given
boundary when the damping is set to zero:

(i) Setting Kconst,i i = 0 (∀i ∈ [1, 6] ⊂ N).
(ii) Setting the initial maximum allowedwrench at the

virtual boundaries by taking the maximum pay-
load of the robot into account: Wmax,1:3 = 30 N
and Wmax,4:6 = 20N m.

(iii) Perturbing the end-effector of the robot and reduc-
ing the size of the virtual constraints (XB,i ), until
the robot starts to oscillate.

(iv) ReducingWmax,i and keeping the value for XB,1:6
before the oscillation.

(v) Repeating steps item 3 and item 4 until: XB,1:3 =
0.001m and XB,4:6 = 0.0174rad.

The controller is tested again after calibration, and
trajectory tracking performance is evaluated with the
same method used for the trajectory tracking experi-
ment above. Furthermore, the stability and the accu-
racy of the force interaction are evaluated using the
force/torque sensor mounted at the end-effector. The
force interaction has been limited to the z-axis for the
scope of this paper. The following experiments are car-
ried out during this phase:

(1) Static & trajectory tracking: the previous experi-
ments are repeated after calibration.

(2) Online virtual boundary adjustment: the human
operator randomly perturbs the robot in static as its
virtual constraint size of XB,1:3 is decreased online.
XB,1:3 reduces from 0.20m by 0.0025m every sec-
ond until it reaches 0.001m.During the interaction,
the manipulator stiffness automatically increases
from initial value of kd,2 = 150Nm−1 at the begin-
ning of the experiment where XB,1:3 = 0.20m to
kd,2 = 1250Nm−1 at the end due to the change in
the virtual constraints.

(3) Circular trajectory tracking: the trajectories on the
xy-, xz- and yz-planes are tracked to evaluate the
accuracy of the controller across multiple direc-
tions. The starting pose is Xd = [0.4 0 0.85 0 0 0]T ,
the trajectory execution period T = 40 s, and its
radius = 0.1m. The tracking performance has
been evaluated initially for Kconst = 0, then set-
ting Kconst,i i = 150Nm−1 for the linear degrees of
freedom and Kconst,i i = 5Nm rad−1 for the angu-
lar degrees of freedom.

4) Interaction with objects: the robot makes contact
with Box #1 shown in Fig. 8a and gradually pushes
down to exert the maximum allowed force in the
direction of z-axis. The force evolution over time
is recorded with the force/torque sensor and com-
pared with the data from the forward model. The
virtual constraints are XB,1:3 = 0.1mand XB,4:6 =
0.1746 rad.
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3.3 Robustness to low-bandwidth feedback

The FIC’s robustness to low-bandwidth feedback is
evaluated on a static pose and trajectory tracking tasks
along the lateral direction (y-axis). In both cases, the
controller behaviour is analysed in both unperturbed
and perturbed conditions. Low-bandwidth feedback is
emulated by applying a zero-order hold to the robot’s
sensory feedback signals. The perturbations used are
10 pushes manually applied at the end-effector along
the vertical directions (z-axis). The RMSE and recov-
ery time of the perturbations are calculated for exper-
iments executed with feedback frequencies of 20, 100
and 1000Hz.

All the low-bandwidth experiments were conducted
setting XB = [7.5 7.5 7.5 1.047 1.047 1.047]T cm or
rad, Kconst = diag(100, 100, 100, 5, 5, 5) N/m or
Nm/rad, and apassivedampingD = diag(2.5, 2.5, 2.5,
1.25, 1.25, 1.25) Nsm−1 or Nms rad−1. The passive
damping was introduced to experimentally verify that
the stability of the system is not compromised as long
as there is not velocity tracking. Lastly, it shall be
noted that during this experiment the Franka Arm was
wrapped in plastic covers due to a concurrent experi-
ment involving sand.

4 Results

The passivity of the controller is verified by checking
the difference between the absorbed Ein and energy
released on the environment Erel, computed as follows:

Ein =
6∑

i=1

∫

Kd,i i X̃i d X̃i , Divergence

Erel = max

(
1

2
Ẋ T�(q)Ẋ

)

, Convergence

(16)

4.1 End-effector pose tracking before controller
calibration

The collected data for the static perturbations in Table 2
indicate that the position error is constrained and con-
sistent. The average convergence time over the 15 per-
turbations is 1.43±0.047 s and the difference between
the absorbed and released energy in static is Erel −
Ein = −0.011 ± 0.003 J. The trajectory tracking data
are reported in Table 2. The average convergence time
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Fig. 6 Stiffness Profile w.r.t XB,1:3 = 0.05m and XB,4:6 =
0.1746rad—a variable stiffnessw.r.t position error (X̃1:3),bVari-
able stiffness w.r.t orientation error (X̃4:6)

to the desired pose is 1.45 ± 0.047 s, and the energy
exchanged is −0.019 ± 0.006 J.

4.2 Controller calibration

Table 1 represents the results of the controller calibra-
tion and it shows how the value ofWmax changes as XB

varies. A preliminary analysis of the stiffness profile
obtained with the Franka Panda has been performed to
verify that the proper impedanceprofile has been imple-
mented in the robot. The results are shown in Fig. 6,
which are congruentwith the theoretical profiles shown
in Fig. 2.

4.3 End-effector pose tracking and forward force
control after controller calibration

Static & trajectory tracking: the data recorded for the
static poses experiment after calibration are reported in
Table 2. They indicate that there is a reduction of the
pose error after a perturbation. The static position errors
gets 7 times smaller after calibration. Meanwhile, the
orientation errors gets 3 times smaller after calibration.
The calibration also reduces the RMSE of the track-
ing errors of a factor between 2.5 and 3.5. The con-
vergence time to the desired pose is 1.38 ± 0.044 s
and the difference of absorbed and release energy is
−0.033 ± 0.010 J. These results are also confirmed
by the trajectory tracking experiment data reported in
Table 2. The convergence time is 1.42±0.045 s and the
difference between the absorbed and released energy is
−0.048 ± 0.013 J during trajectory tracking.

Online virtual boundary adjustment: the stability is
not affected by an online change of the virtual con-
straints while a user introduces random perturbations
to the robot. The system remains passive over the trial
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Table 1 Controller calibration w.r.t Wmax and XB

Linear

Wmax,x XB,x Wmax,y XB,y Wmax,z XB,z

30 ≥ 3 30 ≥ 9 30 ≥ 8

15 [ 1, 3 ) 25 [ 5, 8 ) 28 [ 5, 8 )

12.5 [ 0, 1 ) 22.5 [ 4, 5 ) 26 [ 4, 5 )

// // 20 [ 3, 4 ) 24 [ 3, 4 )

// // 18 [ 2, 3 ) 20 [ 2, 3 )

// // 12.5 [ 0.7, 2 ) 12.5 [ 0.7, 2 )

// // 10 [ 0.6, 0.7 ) 10 [ 0.6, 0.7 )

// // 6 [ 0.4, 0.6 ) 6 [ 0.4, 0.6 )

// // 5 [ 0.3, 0.4 ) 5 [ 0.3, 0.4 )

// // 4 [ 0.2, 0.3 ) 4 [ 0.2, 0.3 )

// // 3 [ 0.1, 0.2 ) 3 [ 0.1, 0.2 )

// // 2 [ 0, 0.1 ) 2 [ 0, 0.1 )

Angular

Wmax,φx XB,φx Wmax,φy XB,φy Wmax,φz XB,φz

20 [ 1.04, 10π ]20 [ 1.04, 10π ]20 [ 2.61, 10π ]
15 [ 0.87, 1.04 )15 [ 0.87, 1.04 )15 [ 0.69, 2.61 )

5 [ 0.17, 0.87 )5 [ 0.17, 0.87 )5 [ 0.17, 0.69 )

The forces and torques are expressed in N and Nm, respectively.
The position are reported in cm, and the angles are expressed in
drad

with a difference between the absorbed and the released
energy of −0.136 ± 0.005 J.

Circular trajectory tracking: Table 3 reports RSME
tracking performances of end-effector pose on the xy-,
xz- and yz-planes for Kconst �= 0. The best tracking per-
formance is obtained with a boundary of 0.01m bound-
ary when Kconst �= 0. The highest RMSE recorded is

Table 3 Themean of theRMSEmeasured for tracking a circular
trajectory on 3 different planes

plane x̃ ỹ z̃

XB,1:3 = 0.01(m)

xy 5.3 2.2 3.1

xz 5.2 2.1 3.3

yz 5.3 2.4 3.2

XB,1:3 = 0.10(m)

xy 23.6 7.1 5.3

xz 24.8 4.3 5.6

yz 18.4 4.5 5.1

The values are expressed in mm
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Fig. 7 Circular trajectory tracking on yz-plane

less than 0.007m. Sample circular trajectories for the
yz-plane are provided in Fig. 7.

Interaction with objects: the steady state force
recorded during the interaction with a box is 27.01N
which is the 95% of the desired interaction force
(Figs. 8, 9).

Table 2 Static (S) and Trajectory Tracking (TT) Errors recorded before (BC) and after (AC) calibration

S-BC S-AC TT-BC-NP TT-AC-NP TT-BC-WP TT-AC-WP
¯̃X ± σ

¯̃X ± σ RMSE RMSE ¯̃X ± σ
¯̃X ± σ

x̃(cm) 3.52 ± 0.11 0.43 ± 0.01 3.28 1.14 3.32 ± 1.06 1.24 ± 0.40

ỹ(cm) 3.48 ± 0.11 0.32 ± 0.01 3.46 1.08 3.54 ± 1.14 1.20 ± 0.38

z̃(cm) 3.83 ± 0.12 0.35 ± 0.01 3.67 1.17 3.73 ± 1.20 1.26 ± 0.41

φ̃x (crad) 3.23 ± 0.10 1.14 ± 0.03 4.11 1.29 4.13 ± 1.33 3.38 ± 1.09

φ̃y(crad) 2.72 ± 0.08 1.24 ± 0.04 4.36 1.18 4.48 ± 1.44 3.22 ± 1.03

φ̃z(crad) 3.17 ± 0.10 −1.38 ± 0.04 4.69 1.38 4.74 ± 1.52 5.44 ± 1.10

WP indicates experiments with perturbations. NP refers to experiments without perturbations. ¯̃X is the mean, and σ is the standard
deviation
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Fig. 8 Snapshots of the
interaction experiments. a
Vertical interaction with a
cardboard box. b Interaction
during tracking a sinusoidal
trajectory (along the y-axis)
while interacting with a
cardboard box. c Tracking a
sinusoidal trajectory along
the y-axis while interacting
with a curved surface
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Fig. 9 Data recorded in the interaction experiments. a Static
interactionwith a cardboard boxnormalisedwrt time.The shaded
area are the 90% prediction bounds for the recorded data. b Inter-
action with the cardboard box while tracking a sinusoidal trajec-
tory along the y-axis. The average maximum force is 28.45N.
c Interaction with the curved surface while tracking a sinu-
soidal trajectory along the y-axis. The average maximum force
is 28.85N

4.4 Robustness to low-bandwidth feedback

The controller remains stable after receiving an exter-
nal perturbation even with a feedback bandwidth of
20Hz as shown in Figs. 10 and 11. The data gath-
ered in Table 4 indicate that as the feedback fre-
quency decreases the position error of x̃ , ỹ and z̃
increases, but the tracking error at its highest peak is

2 3 4 5 6 7
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(b)

Fig. 10 Comparison of one random interaction at the end-
effector with the following feedback bandwidths: 1000, 100 and
20Hz. a Static pose, b trajectory tracking. Reducing the feed-
back bandwidth reduces the tracking accuracy, but it does not
compromise the task even when the system is perturbed

less than 5mm. The recovery time in the static task
for the feedback frequencies of 1000, 100 and 20Hz
are 1.33± 0.043 s, 1.45± 0.047 s and 2.26± 0.074 s,
respectively. The recovery time for the trajectory track-
ing task for the aforementioned feedback frequencies
are: 1.37±0.090 s, 1.51±0.049 s and 3.13±0.103 s,
respectively.

5 Discussion

The experiments verify that the FIC retains passivity in
a redundant manipulator without requiring the obser-
vation of the entire robot state. As a consequence, the
FIC’s stability is independent from the null-space con-
troller, which is regarded as an external perturbation.
The tracking accuracy data indicate that it is robust to
model errors, which are equivalent to external distur-
bances and are compensated by the FIC’s nonlinear
stiffness. The experiments also show that the robot can
initiate rigid contactwith unknownbodies and dynamic
systems without any assumption on the interaction.
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Fig. 11 Comparison of trajectory tracking along the y-axis
with/without interaction on the end-effector with the following
feedback bandwidths: 1000, 100 and 20Hz. a Without interac-
tion, and b with interaction (same experiment of Fig. 10b). A
perturbation along the z-direction does not affect the task along
the y-direction in any of the tested conditions

Table 4 Results of the low-bandwidth feedback experiments

S TT-NP TT-WP
¯̃X ± σ RMSE ¯̃X ± σ

f = 1000Hz

x̃(mm) 1.4 ± 0.5 3.1 3.3 ± 1.1

ỹ(mm) 1.5 ± 0.5 3.2 3.5 ± 1.1

z̃(mm) 2.8 ± 0.9 3.3 3.4 ± 1.1

f = 100Hz

x̃(mm) 1.7 ± 0.6 3.4 3.6 ± 1.2

ỹ(mm) 1.7 ± 0.5 3.7 3.9 ± 1.3

z̃(mm) 2.6 ± 0.9 2.8 3.0 ± 1.0

f = 20Hz

x̃(mm) 1.8 ± 0.6 3.7 3.9 ± 1.3

ỹ(mm) 1.9 ± 0.6 4.2 4.6 ± 1.5

z̃(mm) 2.8 ± 0.9 3.3 3.4 ± 1.1

S refers to static experiments. TT stands for Trajectory Tracking
experiments. WP indicates experiments with perturbations. NP

refers to experiments without perturbations. ¯̃X is the mean, and
σ is the standard deviation

In the attached video, the reader can also appreciate
how the robot remains stable even in the case of a
sudden loss of contact when applying the maximum
achievable interaction force. The robustness is further
showcased in Figs. 8 and 9 where the robot initiates
and brakes contact with 3 different rigid bodies with-
out any need to account for the objects’ presence or
shape in the controller. Furthermore, the video includes
the following additional scenarios: FIC with damp-
ing in the convergence phase, perturbation beyond the
boundaries without damping and rapid shaking with-
out damping. The passivity was verified in all cases.
The time of the convergence are 1.24, 1.33 and 1.35 s,
respectively. Therefore, it can be said that the con-
troller is intrinsically stable independently from envi-
ronmental interactions both theoretically and experi-
mentally. The data also show that the trajectory tracking
errors RMSE (Tables 2, 3) are always contained within
the task boundaries set by the user. Thus, we validate
that tracking performance is not affected by removal
of active damping, due to the high on-line adjustable
impedance gains that may be achieved with the pro-
posed controller.

These results are possible because the stability of
the proposed controller does not rely on the projection
matrices used by conventional controllers to account
for null-space and contact during stabilization [39–
41]. Mainly, Moura et al. have recently studied and
reported the effect of numerical instability related to
projection matrices on the performance of both contact
and null-space controllers, which is considered a major
limitation of stable interaction with highly variable and
unknown dynamics [41].

In summary, the major difference between tank
based controllers and the proposedmethod is that a non-
linear controller impedance as an energy storage func-
tion eliminates dependency from null-space projec-
tions and, consequently, singularities. The FIC energy
maps the robot energy, which is upper-bounded by the
maximum displacement from the desired pose and is
zero only when the robot is in the desired pose. Conse-
quently, the FIC overcomes the limitation of the tank-
based approach that is susceptible to miss-estimation
of the exchanged energy [31].

The experiments with low-feedback bandwidth
demonstrate that the proposedmethod is immune to the
miss-estimation of exchanged energy intrinsic to meth-
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ods requiring integration to evaluate the state of the con-
troller. The tracking error is slightly increased by the
reduction of the feedback bandwidth, and there is also
an increase in the oscillatory behaviour while recover-
ing from a perturbation. Thus, reduced feedback band-
width degrades the system’s dynamic response, but it
does not alter the stability proprieties of the controller.
These results are particularly important because they
show how this controller may be operated directly via
feedback from camera sensors, which typically require
computationally complex sensor fusion and state esti-
mators that are susceptible to drift [42–44].

The sole limitation of the proposedmethod currently
known to the authors is that when using a nonlinear
impedance profile, there is a jump in forcewhen switch-
ing from divergence to convergence. This behaviour is
due to the different slopes of the stiffness energy in the
two phases, and further research need to be conducted
to identify a solution to ensure energy and force con-
servation at the switching condition for nonlinear force
profiles.

6 Conclusion

Thismanuscript introduces a framework for impedance
controllers which relies on a fractal task-space attractor
to guarantee the stability of interaction with unknown
environments. The FIC enables online impedance
adaptationwithout introducing additional stability con-
ditions, which is not possible with traditional con-
trollers [17,39,45]. The results show that the system
can achieve a good level of accuracy in trajectory track-
ing, and it can exert significant forces on the environ-
ment without compromising stability. At the best of the
authors’ knowledge these results are the first example
of accurate trajectory tracking that relies solely upon
the nonlinear stiffness of the controller. Future works
will focus on identifying different impedance profiles
and attractor characteristics that will enable the appli-
cation of this framework to fields such as medical and
industrial robots.
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