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Abstract
We develop a single-class ice and snow model embedded inside a 3D hydrodynamic model on unstructured grids and apply 
it to lake studies using highly variable mesh resolution. The model is able to reasonably capture the ice fields observed in 
both small and large lakes. For the first time, we attempt simulation of ice processes on very small scales (~ 1 m). Physically 
sound results are obtained at the expense of moderately increased computational cost, although more rigorous validation 
nearshore is needed due to lack of observation. We also outline challenges on developing new process-based capabilities for 
accurately simulating nearshore ice.

Keywords Ice simulation · Unstructured grids · SCHISM · Great Lakes

1 Introduction

Lake ice plays an important role in lake circulation and bioge-
ochemical processes (White et al. 2012; Fujisaki et al. 2013). 
Majority of the current generations of ice models (Bouillon 
et al. 2013) are concentration based implemented in the Eule-
rian framework, although attempts have been made to utilize 
progressive damage models used in rock mechanics expressed 
in the Lagrangian framework (Bouillon and Rampal 2015) 
and also discrete element method (West et al. 2022).

Most lake ice models are adapted from sea ice models with 
minor modifications in parameterizations (e.g., White et al. 
2012; Bai et al. 2020; Li et al. 2021). Aside from the large lakes 
(e.g., the Great Lakes), a popular efficient approach for modeling 

lake ice is based on one-dimensional models (Mironov et al. 
2010; Smirnova et al. 2016; Xiao et al. 2016; Benjamin et al 
2022). These one-dimensional lake models appear to be suffi-
cient for modeling small lakes but have limitations for modeling 
ice and hydrodynamics in large lakes. We, therefore, focus on 
a coupled 2D ice and 3D hydrodynamic model in this paper.

A main challenge in lake ice studies is to capture very 
small-scale ice processes as found in harbors and ports. 
To the best of our knowledge, this challenge has not been 
directly addressed due to formidable difficulty related to 
our understanding of small-scale processes, in addition to 
numerical stability.

In this paper, we apply an unstructured-grid, single class 
(in terms of ice thickness) ice and snow model embedded 
inside a widely used 3D hydrodynamics model SCHISM 
(schism.wiki; Zhang et al. 2016) to model seasonal develop-
ment of lake ice in the Great Lake region, including both a 
small lake (Lake Mendota) and a large lake (Lake Superior). 
Although a multi-class ice model based on CICE/Icepack 
(Hunke et al. 2015) is also available inside SCHISM, it is 
more instructive to address the numerical challenges such as 
using very high mesh resolution with a simpler single-class 
model first before adding more ice physics. Note that the 
high resolution is not meant as a way to resolve individual 
ice floes. We will not detail the model skill for other physi-
cal variables such as the water temperature (except for a 
brief comparison of lake surface temperature (LST)), as we 
have demonstrated that in previous publications (e.g., Zhang 
et al. (2015) for Lake Mendota) and will do so in upcoming 
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publications (e.g., Anderson et al. (to be submitted) for Lake 
Superior).

In Section 2, we describe the major observation datasets 
and model setup we use in this paper. Section 3 details the 
ice model validation for two lakes. The ice results including 
sensitivity for Lake Superior are further analyzed in Sec-
tion 4, where we will also present some preliminary results 
for application of the ice model to harbors and rivers using 
very fine local resolution and outline the challenges on 
developing new process-based capabilities for accurately 
simulating nearshore ice. Section 5 summarizes the paper 
and also provides future direction.

2  Observation and model setup

Ice observation data is usually scarcer than the standard 
hydrodynamic data, and, therefore, we use two sets of obser-
vations (ice mass and ice concentration) taken from two lake 
systems in this paper in order to evaluate the performance 
of our ice model.

The ice mass (thickness) data were collected for a small 
dimictic lake near Madison, Wisconsin. Lake Mendota, with 
a mean depth of 12.7 m and maximum depth of 25.3 m, has a 
surface area of 39.4  km2, a shoreline length of about 34 km, 
and a maximum fetch of 9.8 km (Kitchell 1992). Although 
located in the Great Lakes region, Lake Mendota is not 
directly connected to any of the five Great Lakes. It freezes 
over each year in the winter. The ice data are available at 
the North Temperate Lakes Long-Term Ecological Research 
(NTL-LTER) Program website (http:// lter. limno logy. wisc. 
edu/ index. html). Intensive sampling was conducted weekly 

from January 14 to March 30, 2010 on Lake Mendota when 
the ice was safe to walk on, using a Kovacs Mark III core 
drill to collect ~ 27 ice cores, which yielded a total of 165 
measurements of ice and snow thickness (Fig. 1). The sta-
tion locations used in comparison are shown in Fig. 1. In 
addition, thermistor chains were deployed in Lake Mendota 
at three locations at water depths of 5 m (D5), 15 m (D15), 
and 25 m (D25) (Fig. 1). Under-ice water temperatures were 
recorded from January 30 to March 5, 2010, which is used 
to initialize the model temperature in this paper.

For the Lake Superior system, which is the largest (con-
taining 10% of the total surface freshwater on earth; Mathe-
son and Munawar 1978) and least perturbed by human 
activities among the Laurentian Great Lakes (White et al. 
2012), we use the Great Lakes Surface Environmental 
Analysis (GLSEA) data to assess the modeled ice concen-
tration. Ice dynamics are an integral part of the physical 
processes in this temperate lake, and annual freezing usually 
starts around early December and ice cover persists until 
April/May in the next year, with maximum strength reached 
around mid-March. The water tends to be well mixed during 
this period.

Although some scattered coring data is available for this 
system as well (Titze and Austin (2016) presented data for 
2014–2015), we have not been able to obtain such data for 
any recent years. Nonetheless, the ice concentration data 
from GLSEA allows a comprehensive assessment of the ice 
model in a large area.

The modeling system used in this paper is an open-source 
unstructured-grid-based 3D model (SCHISM; schism.wiki; 
Zhang et al. 2016) that incorporates an ice component, 
derived from a well-validated community ocean-ice model 

Fig. 1  Lake Mendota showing 
the ice coring and thermistor 
chain locations

http://lter.limnology.wisc.edu/index.html
http://lter.limnology.wisc.edu/index.html
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(FESOM: finite-volume sea ice-ocean model; Wang et al. 
2014). Both SCHISM and the ice model allow multi-scale 
physics on variable resolution; in the vertical dimension, 
a highly flexible vertical gridding system  (LSC2; Zhang 
et al. 2015) is used to optimally place resolution where it is 
needed, with variable number of layers at different depths. 
The vertical grid allows shaved cells and a single layer to 
be used; the latter effectively morphs the model to 2DH 
(2D depth averaged) configuration locally. To address the 
challenges of scaling for the application cases shown in this 
paper, two algorithmic modifications were made to the ice 
model as described below.

Unstructured meshes are generated for the two lakes 
using the best available digital elevation models (DEMs). 
Shown in Fig. 2 is the Superior mesh, with resolution rang-
ing from ~ 5 km (in the deeper basin) to ~ 20 m near some 
coastal structures nearshore. The mesh has ~ 34,000 nodes 
and ~ 63,000 elements. The Lake Mendota mesh is substan-
tially smaller with 1639 nodes and 3064 elements. In the 
vertical dimension, we use 1–37 layers, and the average 
number of layers for Lake Superior is only 8, which makes 
the model very efficient (it finishes 1 year of simulation in 
1 day on 80 cores) using a non-split time step of 100 s for 
Lake Superior. For simplicity, we use for both lakes a uni-
form bottom friction coefficient of 0.001, turbulence closure 
scheme of k-ε, and transport solver of  TVD2 (Ye et al. 2016). 
Note that we have previously demonstrated that the turbu-
lence mixing in the lakes can be captured by the Generic 
Length-scale model embedded inside SCHISM (Zhang et al. 
2015). The air–water momentum and heat exchanges follow 
the bulk aerodynamic model of Zeng et al. (1998). However, 
different atmospheric forcings are used for the two lakes: 
for the 2009–2010 simulation of Mendota, we use Climate 
Forecast System Reanalysis (CFSRv1; https:// cfs. ncep. noaa. 
gov/ cfsr/); for the 2018–2020 simulation of Superior, we use 
the newer High-Resolution Rapid Refresh (HRRR; https:// 
rapid refre sh. noaa. gov/ hrrr/), which is not available for ear-
lier years. HRRR has a nominal resolution of 3 km with 
hourly prediction, which is much finer than CFSRv1.

The initial temperature used in the model came from 
observation: station measurement for Lake Mendota or 
GLSEA remote sensed lake surface temperature (LST) for 
Lake Superior. We started the model in late fall when both 
the temperature stratification and ice extent are minimal. 
The ice model uses a single class of ice and snow, a modi-
fied elastic-visco-plastic (mEVP; Bouillon et al. 2013) solver 
for momentum, and a flux-corrected transport (FCT; Wang 
et al. 2014) solver for the ice transport. Ice thermodynamics 
formulation is based on Parkinson and Washington (1979). 
Standard values for ice and snow albedos are used here: 
0.85/0.75 for dry or frozen snow/ice, and 0.75/0.66 for melt-
ing snow/ice, respectively.

Since we will be dealing with very high-resolution 
meshes (cf. Section 4.2), two algorithmic modifications were 
necessary in the ice model. Neither of these are exclusively 
related to the lake environment. The first change is related 
to mEVP, which uses a pseudo-time solver for VP rheology 
(Bouillon et al. 2013). Essentially, an iterative scheme is 
used to bypass the stringent CFL stability limit with poten-
tial downside of divergence to the original VP state. We 
use 200 iterations in this paper as increasing it to 500 did 
not seem to change the results. More importantly, the two 
weights (α and β as in Bouillon et al. 2013) must be suffi-
ciently large to satisfy the CFL, especially on fine meshes. 
Therefore, an adaptive scheme (aEVP) is proposed for such 
cases:

where A is the element area, C is the minimum, and B is 
an adjustable coefficient that controls how quickly α and β 
depart from their minimum, Δtice is the time step used in the 
ice model (taken to be the main model time step of 100 s in 
this paper). Except for the case in Section 4.2 with very fine 
mesh (down to 1 m), we found that a constant value (e.g., 
200) for α and β is sufficient. On very fine meshes, we found 
that the adaptive scheme had to be used to avoid instabil-
ity (Section 4.2). The second algorithmic change is related 
to FCT in the inundation zone: the lower-order solution is 

(1)� = � = C∕tanh
(

BA∕Δtice
)

Fig. 2  a Unstructured grid for 
Lake Superior, with b zoom-
in showing high resolution 
(~ 20 m) used nearshore in 
Chequamegon Bay. The mesh is 
later extended to include Duluth 
harbor and St Louis River 
watershed (i.e., west of the 
boundary in (a); cf. Section 4.2)

https://cfs.ncep.noaa.gov/cfsr/
https://cfs.ncep.noaa.gov/cfsr/
https://rapidrefresh.noaa.gov/hrrr/
https://rapidrefresh.noaa.gov/hrrr/
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used with maximum monotonicity constraint in this region 
to ensure stability.

3  Model validation

In this section, we assess the model’s ability to simulate ice 
mass and concentration in the two lakes.

3.1  Lake Mendota case

The simulation starts from an ice-free time (Oct 28, 2009) 
and lasts 180 days; the lake becomes essentially ice free 
after ~ 160 days (March 27, 2010) (Figs. 3 and 5). The 
model’s ability to capture the temperature variation and 
stratification over each season has been demonstrated in 
Zhang et al. (2015). The comparison of the ice thickness 
at the ~ 27 stations is shown in Fig. 3, and all of the ~ 165 
time–space measurements are compared in Fig. 4. Overall, 

the model is able to capture the gradual freezing and 
rapid melting phases well. The ice thickness reaches its 
maximum around days 118–146 (Feb. 1 to March 1). The 
modeled ice seems to melt a little too fast compared to 
the observation (Fig. 3), and the ice thickness seems to 
mostly bias high except at a few stations during melting 
(Figs. 3 and 4). The overall RMSE is 8 cm, compared to 
the maximum thickness of ~ 50 cm, suggesting a satisfac-
tory performance.

The model results suggest that the freezing starts on 
Dec 12, 2009 and melting process finished around April 
5, 2010. Between Jan. 2 and Jan. 26, 2010 (days 66 and 90 
in Fig. 5), the entire lake is essentially frozen. There is a 
brief melting period between days 50 and 60 (Fig. 5) when 
the air temperature hovers above 0 degrees for a sustained 
period (Fig. 5). The averaged ice velocity during the ice 
cover period (Fig. 6) suggests that the ice mostly moves 
from the nearshore toward the lake center. Due to the con-
fined geometry, the velocity is generally small.

Fig. 3  Comparison of ice thickness at multiple stations (cf. Figure 1). Note that observation data is missing at some stations
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3.2  Lake Superior case

Ice cover period in Lake Superior usually starts in Decem-
ber and ends in May of each year but exhibits remarkable 
inter-annual variability (Fig. 7). Of the 3 recent years, 2020 
has minimum coverage, while 2018 and 2019 show similar 
maximum but very different durations (~ 60 days of near-
max coverage in 2018 and ~ 20 days for 2019) (Fig. 7a–c). 
The ice area here is defined as places where the ice con-
centration exceeds 15% and is calculated in the same way 
for the model and observation in each cell or mesh element 
over the entire lake. The calculated ice thicknesses (average 
over all areas with ice concentration exceeding 15%) largely 

follow the same trend as concentration, albeit with a phase 
lag similar to White et al. (2012). The inter-annual variabil-
ity of ice thickness is large: Even though the maximum area 
is similar between 2018 and 2019 (Fig. 7a, b), the average 
ice thickness is twice in 2018 (Fig. 7d, e) due to a prolonged 
cold spell in that year. Atmospheric forcing (air temperature 
and solar radiation, etc.) is found to be the main cause for 
the ice cover variability, as the initial lake temperature (on 
Dec. 1 of the preceding years) is similar across the 3 years.

The model is able to capture the intra- and inter-annual 
variation of the ice coverage well (Fig. 7a–c). In particular, 
it accurately captures the timing of the freezing phase, and 
the maximum extent is also reasonably simulated including 

Fig. 4  Scattered diagram for 
the ice thickness comparison. 
The red line represents a perfect 
match

Fig. 5  Time history of air 
temperature (at the center of 
the lake) and total ice area. A 
cut-off threshold of 15% for 
the ice concentration is used to 
calculate the total ice area
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some rapid melting-refreezing events due to large swings 
in the air temperature (Figs. 7 and 9). The modeled melting 
phase also agrees reasonably with observation until near the 
end, when it tends to melt too fast (Fig. 7). Of the 3 years 
simulated, 2020 has both the smallest ice coverage and, 
incidentally, the worst error metrics (Fig. 7). These findings 
are corroborated by the snapshot comparisons during the 
3 phases (Fig. 8). Since the melting usually starts from the 

center of the lake and occurs last in nearshore areas (Fig. 8), 
the errors near the end of the melting phase are most likely 
from the underestimation nearshore. A potential error source 
may come from the errors in the heat budget derived from 
HRRR during the ice melting period; this is especially so 
because the results from White et al. (2012) for other years 
(using different atmospheric sources) suggest the opposite 
trend to ours in delayed melting. On the other hand, the high 
temporal and spatial resolution as in HRRR allows us to cap-
ture high-frequency variations in the ice field (Figs. 7 and 9).

Consistent with the faster-than-reality melting in the 
model, the simulated lake surface temperature (LST) after 
ice melt biases higher than GLSEA by ~ 1.3 °C on aver-
age, although the spatial variation of LST is well captured 
(Fig. 10).

4  Discussion

We will focus on the Lake Superior case in this section and 
skip the sensitivity discussion for Lake Mendota as it is 
much smaller in size and thus exhibits much-less heteroge-
neity. We first discuss the ice field from the 2019 simulation 
including small-scale features and show some sensitivity 
results. We then show preliminary results from an ice simu-
lation that includes the Duluth harbor in very high resolution 
(~ 1 m).

Fig. 6  Averaged ice velocity in the ice cover period (Days 45 to 170)

Fig. 7  a–c Comparisons of total ice area (defined as ice concentra-
tion exceeding 15%) in Lake Superior in 2018–2020 (starting from 
December of 2017–2019, respectively). d–f averaged ice thickness in 
the same 3 years. The Wilmot scores for the 3 years are 0.95, 0.96, 

and 0.78, and the correlation coefficients are 0.94, 0.95, and 0.71, 
respectively. The scores are calculated during the ice-covering peri-
ods
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4.1  Ice simulation results in Lake Superior

The simulated ice concentration and deformation rate 
fields are shown in Fig. 11. The measure of deformation 
rate is composed of the invariants of the strain rate tensor:

where (u,v) are horizontal ice velocities and e = 2 is the 
ellipse aspect ratio. Δ is an important field and is often 
used as an indicator of the capability of sea ice rheology in 
simulating deformation features (Hutter and Losch 2020; 
Bouchat et al. 2022). Besides, in an EVP-like sea ice model, 
it is an indicator of the absence of numerical noise. Δ is 
usually shown in log scale and is usually very small when 
the concentration is smaller than ~ 0.7, and the ice exhibits 
plastic behavior. The Δ field also indicates some fine-scale 
features, especially nearshore (Fig. 11b, d). The Δ field does 
not show any noise, except perhaps in some high-resolution 
parts (Fig. 11d). However, since the ice concentration is far 
from 1 in those areas, the internal ice stress is hardly playing 

(2)Δ =

[

(

ux + vy
)2

+

(

ux − vy
)2

+
(

uy + vx
)2

e2

]1∕2

a big role there. Correspondingly, the ice velocity is shown 
to converge nearshore (Fig. 12), resulting in ridging behavior 
there.

The sensitivity of the ice to the mEVP parameters (α,β) 
is found to be mostly subtle (Fig. 13). Some minor dif-
ferences in Δ can be seen in the southeastern area close 
to shore, which has resulted in small differences in the 
ice mass there (Fig. 13). The nominal resolution in the 
deeper depths is 5 km, and the finest resolution nearshore 
for this mesh is ~ 20 m. A constant value for α,β seems 
acceptable for this mesh to guarantee the convergence of 
the ice results.

The ice results are, however, very sensitive to the initial 
lake temperature. As shown in Fig. 14, a small error in it 
(± 1 °C) would result in large errors in the total predicted 
ice area. This is especially true for the freezing phase 
(Fig. 14). With a colder initial temperature, the maximum 
and melting phases are similar to the reference simulation 
(Fig. 14). Interestingly, the more rapid freezing did not 
seem to substantially delay the melting (Fig. 14). With a 
warmer initial temperature, however, the ice area appears 
too small throughout the ice cover period (Fig. 14).

Fig. 8  Snapshot comparisons of ice concentration between GLSEA 
observation (top row) and model (bottom row) during 3 phases: freez-
ing, near max, and melting in 2019. The model is doing well during 

the first 2 phases but melts faster. See Supplemental Material for an 
animation for the modeled ice concentration. The white space indi-
cates the ice-free areas
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4.2  Exploratory work on ice modeling on very fine 
meshes

Kimmritz et al. (2017) suggest that the mEVP solver may 
underestimate the ice strength when the mesh resolution is 
very high. This is due to the divergence of mEVP results 
from the “true” VP state, unless a prohibitive number of 
iterations is used. Implicit solvers like Zhang and Hibler 

(1997) share a similar issue of non-convergence with non-
linear iterative solvers. The non-convergence, however, may 
be tolerable for practical applications (Kimmritz et al. 2017).

To the best of our knowledge, none of the previous ice 
models have been applied to the type of resolution used here, 
and it is therefore useful to explore their behavior in this 
extreme case for future development. Strictly speaking, very 
fine mesh resolution may violate continuum assumption of 

Fig. 9  The rapid melting and 
refreezing events in 2018. a 
Air temperature during March–
April 2018; b, d GLSEA obser-
vation for ice concentration on 
April 7 and 9, respectively; c, 
e modeled ice concentration. 
The white space indicates the 
ice-free areas
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ice floes (with size ~ 100 m or larger) in the Eulerian frame-
work, but it is still useful to explore this extreme case and 
contrast the results with those from discontinuous elements 
or other methods. The original Hibler’s VP rheology was 
proposed for relatively coarse meshes. While this rheology 
is not necessarily the best approach in this case, the scales 
below, which it fails, are not clear yet, and we hope it is still 
giving some approximation to real dynamics. In our future 
model development, we will consider testing different sea 

ice rheology and model discretization (e.g., Rampal et al. 
2019) and incorporate other types of sea ice model formu-
lations (e.g., discrete element method, West et al. 2022). In 
this regard, our current experience with the traditional sea 
ice dynamics will provide us with the basic knowledge as a 
reference for future model improvement.

To this end, we added an estuary (Duluth harbor and 
the St Louis River) to the previous mesh. St Louis River 
(Fig. 15) is one of the largest tributaries of Lake Superior, 

Fig. 10  Comparison of LST 
in 2019 at the end of 180-day 
simulation between a GLSEA 
observation and b model

Fig. 11  a Ice concentration and b Δ in Lake Superior with c, d zoom-in in the Chequamegon Bay near ice maximum in 2019 (March 17)
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Fig. 12  Ice velocity on March 
11, 2019

Fig. 13  Sensitivity results from changing α,β in mEVP. a, c ice mass 
and Δ predicted with α = β = 200; b, d ice mass and Δ predicted with 
adaptive α with C = 200, B = 0.01 (note the minor difference in Δ 
in the southeast). Similar to Fig.  11, the places where we see some 

patchiness in Δ are the places where ice thickness is small (and the 
concentration is low). This indicates that numerical stability is likely 
sufficient

Fig. 14  Sensitivity results with 
respect to the initial condition 
for temperature. a Ice area; b 
averaged ice thickness
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with an average flow of ~ 140  m3/s. The St Louis watershed 
also includes other smaller rivers as shown in Fig. 15, and 
the total discharge from those smaller rivers is roughly 1⁄3 
of St Louis River flow. The unstructured mesh for this sys-
tem resolves the St Louis watershed and all major bathym-
etric features like the two entrances to Lake Superior, jetties 
and boat basins and piers, with resolution down to ~ 1 m at 
many places. This mesh serves as a severe test for both the 
hydrodynamic and ice model.

The hydrodynamic model setup is the same as before with-
out suffering any instability due to the implicit scheme used. 
For the ice model, we had to increase the number of iterations 
for the mEVP solver from 200 to 500 and used an adaptive 
scheme for α,β, with C = 200, B = 0.02 in Eq. (1) to satisfy 
the CFL criterion. The maximum number of subcycling in 
the FCT transport solver is also increased to 40 in order to 
satisfy the Courant condition (i.e., with a reduced time step 
for the transport equation). These changes only lead to a 
moderate increase of ~ 6% in the computational cost because 
only one class of ice and snow is used here; with multi-class 
ice and snow, the increase in the computational cost can be 
substantial.

The simulated ice field seems reasonable, with the harbor 
and rivers frozen as the rest of Lake, and no obvious artifacts 
observed (Fig. 15). The ice may be too thin based on anec-
dotal observation, but more rigorous validation is necessary 
in the future when more ice observation is available inside 
the harbor.

Although the work here shows promises for simulating 
ice on very localized scales, future work is clearly needed 
to account for some missing processes: heat exchange 
between soil and water (which is important for small semi-
enclosed systems; Hsieh 2011); wave effects on ice; and 
landfast ice (Lin et al. 2022); etc. New classes of ice mod-
els might be required to address some of these challenges. 
From a modeling point of view, although the explicit meth-
ods (mEVP and advection) appeared to be applicable on 

such variable fine meshes as demonstrated in this paper, 
it remains unclear if we should invest in implicit (or even 
hybrid explicit-implicit) VP solver and implicit advection, 
which might require less tuning in the end. An efficient 
solver and preconditioner for such variable meshes are the 
key focus for future work. This approach may be able to 
further smooth the noise in the Δ field.

5  Conclusion

We have successfully developed and validated a simple 
ice model embedded inside a 3D hydrodynamic model 
on unstructured grids. The model was able to reasonably 
capture the ice fields observed in two lakes but slightly 
overestimated the ice melting speed. For the first time, 
we attempted simulation of ice processes on very small 
scales (down to 1 m), although more rigorous validation 
nearshore is needed. Future work will focus on developing 
new capabilities for accurately simulating nearshore ice.
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