133 research outputs found

    Challenges and opportunities in remote prototyping: a case-study during COVID-19

    Get PDF
    Collaboration is common practice within design disciplines and beyond. Brainstorming, discussions, and prototyping tend to occur within the same physical space. The reduction of human interaction during the COVID-19 pandemic disrupted these practices. In this paper, we focus on the possibilities and challenges of remote prototyping of four student teams by combining a double diamond approach with tools to overcome remote work challenges. The results were analyzed to understand crucial tools, advantages, and obstacles. The key challenges and opportunities were then identified and examined

    Computerized clinical documentation system in the pediatric intensive care unit

    Get PDF
    BACKGROUND: To determine whether a computerized clinical documentation system (CDS): 1) decreased time spent charting and increased time spent in patient care; 2) decreased medication errors; 3) improved clinical decision making; 4) improved quality of documentation; and/or 5) improved shift to shift nursing continuity. METHODS: Before and after implementation of CDS, a time study involving nursing care, medication delivery, and normalization of serum calcium and potassium values was performed. In addition, an evaluation of completeness of documentation and a clinician survey of shift to shift reporting were also completed. This was a modified one group, pretest-posttest design. RESULTS: With the CDS there was: improved legibility and completeness of documentation, data with better accessibility and accuracy, no change in time spent in direct patient care or charting by nursing staff. Incidental observations from the study included improved management functions of our nurse manager; improved JCAHO documentation compliance; timely access to clinical data (labs, vitals, etc); a decrease in time and resource use for audits; improved reimbursement because of the ability to reconstruct lost charts; limited human data entry by automatic data logging; eliminated costs of printing forms. CDS cost was reasonable. CONCLUSIONS: When compared to a paper chart, the CDS provided a more legible, compete, and accessible patient record without affecting time spent in direct patient care. The availability of the CDS improved shift to shift reporting. Other observations showed that the CDS improved management capabilities; helped physicians deliver care; improved reimbursement; limited data entry errors; and reduced costs

    Comparison of the effectiveness of three manual physical therapy techniques in a subgroup of patients with low back pain who satisfy a clinical prediction rule: Study protocol of a randomized clinical trial [NCT00257998]

    Get PDF
    BACKGROUND: Recently a clinical prediction rule (CPR) has been developed and validated that accurately identifies patients with low back pain (LBP) that are likely to benefit from a lumbo-pelvic thrust manipulation. The studies that developed and validated the rule used the identical manipulation procedure. However, recent evidence suggests that different manual therapy techniques may result similar outcomes. The purpose of this study is to investigate the effectiveness of three different manual therapy techniques in a subgroup of patient with low back pain that satisfy the CPR. METHODS/DESIGN: Consecutive patients with LBP referred to physical therapy clinics in one of four geographical locations who satisfy the CPR will be invited to participate in this randomized clinical trial. Subjects who agree to participate will undergo a standard evaluation and complete a number of patient self-report questionnaires including the Oswestry Disability Index (OSW), which will serve as the primary outcome measure. Following the baseline examination patients will be randomly assigned to receive the lumbopelvic manipulation used in the development of the CPR, an alternative lumbar manipulation technique, or non-thrust lumbar mobilization technique for the first 2 visits. Beginning on visit 3, all 3 groups will receive an identical standard exercise program for 3 visits (visits 3,4,5). Outcomes of interest will be captured by a therapist blind to group assignment at 1 week (3(rd )visit), 4 weeks (6(th )visit) and at a 6-month follow-up. The primary aim of the study will be tested with analysis of variance (ANOVA) using the change in OSW score from baseline to 4-weeks (OSW(Baseline )– OSW(4-weeks)) as the dependent variable. The independent variable will be treatment with three levels (lumbo-pelvic manipulation, alternative lumbar manipulation, lumbar mobilization). DISCUSSION: This trial will be the first to investigate the effectiveness of various manual therapy techniques for patients with LBP who satisfy a CPR

    Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings

    Get PDF
    The aim of this study was to evaluate the clinical efficacy as determined by time to progression and response rate (RR) of autologous vitespen (formerly HSPPC-96; Oncophage, Antigenics Inc., New York, NY, USA) with and without interleukin-2 (IL-2; Proleukin: Chiron, Emoryville, CA, USA) in stage IV metastatic renal cell carcinoma (RCC) patients undergoing nephrectomy. Eighty-four patients were enrolled on study, and then underwent nephrectomy and harvest of tumour tissue for use in autologous vaccine manufacture. Initial treatment schedule started approximately 4 weeks after surgery and consisted of six injections: once weekly for 4 weeks, then two injections biweekly (vaccines administered at weeks 1, 2, 3, 4, 6, 8), followed by restaging at or around week 10. Patients who had stable or responsive disease continued to receive vaccine, with four more vaccinations biweekly (at weeks 10, 12, 14, 16). Patients who had progressive disease at week-10 evaluation received four consecutive 5-day-per-week courses of 11 × 106 U of IL-2 subcutaneously (weeks 10, 11, 12, 13), with four doses of vitespen at 2-week intervals (at weeks 10, 12, 14, 16). At the next evaluation (week 18), patients with a complete response received two further cycles of vitespen (with IL-2 if also received during prior cycle) or until vaccine supply was exhausted. Patients with stable disease or partial response repeated their prior cycle of therapy. Disease progressors who had not yet received IL-2 began IL-2 treatment, and progressors who had already received IL-2 came off study. Of 60 evaluable patients, 2 demonstrated complete response (CR), 2 showed partial response (PR), 7 showed stable disease, and 33 patients progressed. Sixteen patients had unconfirmed stable disease. Two patients who progressed on vaccine alone experienced disease stabilisation when IL-2 was added. Treatment with vitespen did not result in a discernable benefit in the majority of patients with metastatic RCC treated in this study. Use in combination with immunoregulatory agents may enhance the efficacy of vitespen

    Changes in Cytokine Levels and NK Cell Activation Associated with Influenza

    Get PDF
    Several studies have highlighted the important role played by murine natural killer (NK) cells in the control of influenza infection. However, human NK cell responses in acute influenza infection, including infection with the 2009 pandemic H1N1 influenza virus, are poorly documented. Here, we examined changes in NK cell phenotype and function and plasma cytokine levels associated with influenza infection and vaccination. We show that absolute numbers of peripheral blood NK cells, and particularly those of CD56bright NK cells, decreased upon acute influenza infection while this NK cell subset expanded following intramuscular influenza vaccination. NK cells exposed to influenza antigens were activated, with higher proportions of NK cells expressing CD69 in study subjects infected with seasonal influenza strains. Vaccination led to increased levels of CD25+ NK cells, and notably CD56bright CD25+ NK cells, whereas decreased amounts of this subset were present in the peripheral blood of influenza infected individuals, and predominantly in study subjects infected with the 2009 pandemic H1N1 influenza virus. Finally, acute influenza infection was associated with low plasma concentrations of inflammatory cytokines, including IFN-γ, MIP-1β, IL-2 and IL-15, and high levels of the anti-inflammatory cytokines IL-10 and IL-1ra. Altogether, these data suggest a role for the CD56bright NK cell subset in the response to influenza, potentially involving their recruitment to infected tissues and a local production and/or uptake of inflammatory cytokines

    Genetic signatures of variation in population size in a native fungal pathogen after the recent intensive plantation of its host tree

    Get PDF
    Historical fluctuations in forests’ distribution driven by past climate changes and anthropogenic activities can have large impacts on the demographic history of pathogens that have a long co-evolution history with these host trees. Using a population genetic approach, we investigated that hypothesis by reconstructing the demographic history of Armillaria ostoyae, one of the major pathogens of the maritime pine (Pinus pinaster), in the largest monospecific pine planted forest in Europe (south-western France). Genetic structure analyses and approximate Bayesian computation approaches revealed that a single pathogen population underwent a severe reduction in effective size (12 times lower) 1080–2080 generations ago, followed by an expansion (4 times higher) during the last 4 generations. These results are consistent with the history of the maritime pine forest in the region characterized by a strong recession during the last glaciation (~19 000 years ago) and massive plantations during the second half of the nineteenth century. Results suggest that recent and intensive plantations of a host tree population have offered the opportunity for a rapid spread and adaptation of their pathogens

    420,000 year assessment of fault leakage rates shows geological carbon storage is secure

    Get PDF
    Carbon capture and storage (CCS) technology is routinely cited as a cost effective tool for climate change mitigation. CCS can directly reduce industrial CO2 emissions and is essential for the retention of CO2 extracted from the atmosphere. To be effective as a climate change mitigation tool, CO2 must be securely retained for 10,000 years (10 ka) with a leakage rate of below 0.01% per year of the total amount of CO2 injected. Migration of CO2 back to the atmosphere via leakage through geological faults is a potential high impact risk to CO2 storage integrity. Here, we calculate for the first time natural leakage rates from a 420 ka paleo-record of CO2 leakage above a naturally occurring, faulted, CO2 reservoir in Arizona, USA. Surface travertine (CaCO3) deposits provide evidence of vertical CO2 leakage linked to known faults. U-Th dating of travertine deposits shows leakage varies along a single fault and that individual seeps have lifespans of up to 200 ka. Whilst the total volumes of CO2 required to form the travertine deposits are high, time-averaged leakage equates to a linear rate of less than 0.01%/yr. Hence, even this natural geological storage site, which would be deemed to be of too high risk to be selected for engineered geologic storage, is adequate to store CO2 for climate mitigation purposes

    The mechanisms by which polyamines accelerate tumor spread

    Get PDF
    Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions

    Cildb: a knowledgebase for centrosomes and cilia

    Get PDF
    Ciliopathies, pleiotropic diseases provoked by defects in the structure or function of cilia or flagella, reflect the multiple roles of cilia during development, in stem cells, in somatic organs and germ cells. High throughput studies have revealed several hundred proteins that are involved in the composition, function or biogenesis of cilia. The corresponding genes are potential candidates for orphan ciliopathies. To study ciliary genes, model organisms are used in which particular questions on motility, sensory or developmental functions can be approached by genetics. In the course of high throughput studies of cilia in Paramecium tetraurelia, we were confronted with the problem of comparing our results with those obtained in other model organisms. We therefore developed a novel knowledgebase, Cildb, that integrates ciliary data from heterogeneous sources. Cildb links orthology relationships among 18 species to high throughput ciliary studies, and to OMIM data on human hereditary diseases. The web interface of Cildb comprises three tools, BioMart for complex queries, BLAST for sequence homology searches and GBrowse for browsing the human genome in relation to OMIM information for human diseases. Cildb can be used for interspecies comparisons, building candidate ciliary proteomes in any species, or identifying candidate ciliopathy genes
    corecore