103 research outputs found

    Modelling and device simulation of photonic crystal surface emitting lasers based on modal index analysis

    Get PDF
    We present a novel semi-analytical method utilising modal index analysis, for modelling the field resonances of photonic crystal surface emitting lasers (PCSELs). This method shows very good agreement with other modelling techniques in terms of mode calculations, with the added advantages of computational simplicity, the calculation of threshold gain, and rapid analysis of finite structures. We are able to model the effect of external lateral feedback and simulations indicate that the near-field peak can be electronically displaced and the threshold as well as the frequency can be controlled through external in-plane feedback, paving the way to dynamic control of PCSELs

    Coherently coupled photonic-crystal surface-emitting laser array

    Get PDF
    The realization of a 1 × 2 coherently coupled photonic crystal surface emitting laser array is reported. New routes to power scaling are discussed and the electronic control of coherence is demonstrated

    Three-dimensional finite-difference time-domain modelling of photonic crystal surface-emitting lasers

    Get PDF
    We investigate the beam divergence in far-field region, diffraction loss and optical confinement factors of all-semiconductor and void-semiconductor photonic-crystal surface-emitting lasers (PCSELs), containing either InGaP/GaAs or InGaP/air photonic crystals using a three-dimensional FDTD model. We explore the impact of changing the PC hole shape, size, and lattice structure in addition to the choice of all-semiconductor or void-semiconductor designs. We discuss the determination of the threshold gain from the diffraction losses, and explore limitations to direct modulation of the PCSEL. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Small signal modulation of photonic crystal surface emitting lasers

    Get PDF
    We report the small-signal characterization of a PCSEL device, extracting damping factors and modulation efficiencies, and demonstrating -3 dB modulation bandwidths of up to 4.26 GHz. Based on modelling we show that, by reducing the device width and improving the active region design for high-speed modulation, direct modulation frequencies in excess of 50 GHz are achievable

    Frequency of eosinophilia and risk factors and their association with Toxocara infection in schoolchildren during a health survey in the north of Lima, Peru

    Get PDF
    During a health survey in a primary school from the district of Carabayllo (North of Lima, Peru), 200 schoolchildren (96 male and 104 female between five to 12 years old) were randomly selected and divided in two groups (as positive or negative group), according to the serologic result of the Toxocara ELISA test from a total population of 646 schoolchildren. All children were analyzed by hematologic tests to determinate the frequency of eosinophilia and leukocytosis. Additionally, all clinical and epidemiological data were also analyzed to determine their association with toxocariasis. From group of children with positive serology, 40% had some type of eosinophilia in contrast to 19% of children with negative serology, and their association was statistically significant (OR = 2.84, p < 0.001). From all signs and symptoms evaluated, only 'dry cough' was more frequent and statistically significant in the positive serology group (OR = 2.79, p < 0.001). Almost all risk factors evaluated were highly frequent and statistically associated to the positive serology. In conclusion, the presence of eosinophilia and the risk factors evaluated in this population were frequently associated to human toxocariasis

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
    corecore