3,500 research outputs found

    Gravitational Radiation from First-Order Phase Transitions

    Full text link
    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.Comment: 7 pages, 7 figure

    Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory

    Get PDF
    Non-adiabatic effects play an important role in many chemical processes. In order to study the underlying non-adiabatic potential-energy surfaces (PESs), we present a locally-constrained density-functional theory approach, which enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs for defined charge and spin states of the chosen subsystems. The capability of the method is demonstrated by calculating non-adiabatic PESs for the scattering of a sodium and a chlorine atom, for the interaction of a chlorine molecule with a small metal cluster, and for the dissociation of an oxygen molecule at the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Adiabatic motion of a neutral spinning particle in an inhomogeneous magnetic field

    Get PDF
    The motion of a neutral particle with a magnetic moment in an inhomogeneous magnetic field is considered. This situation, occurring, for example, in a Stern-Gerlach experiment, is investigated from classical and semiclassical points of view. It is assumed that the magnetic field is strong or slowly varying in space, i.e., that adiabatic conditions hold. To the classical model, a systematic Lie-transform perturbation technique is applied up to second order in the adiabatic-expansion parameter. The averaged classical Hamiltonian contains not only terms representing fictitious electric and magnetic fields but also an additional velocity-dependent potential. The Hamiltonian of the quantum-mechanical system is diagonalized by means of a systematic WKB analysis for coupled wave equations up to second order in the adiabaticity parameter, which is coupled to Planck’s constant. An exact term-by-term correspondence with the averaged classical Hamiltonian is established, thus confirming the relevance of the additional velocity-dependent second-order contribution

    Cumulative and Differential Effects of Early Child Care and Middle Childhood Out-of-School Time on Adolescent Functioning.

    Get PDF
    Effects associated with early child care and out-of-school time (OST) during middle childhood were examined in a large sample of U.S. adolescents (N = 958). Both higher quality early child care AND more epochs of organized activities (afterschool programs and extracurricular activities) during middle childhood were linked to higher academic achievement at age 15. Differential associations were found in the behavioral domain. Higher quality early child care was associated with fewer externalizing problems, whereas more hours of early child care was linked to greater impulsivity. More epochs of organized activities was associated with greater social confidence. Relations between early child care and adolescent outcomes were not mediated or moderated by OST arrangements in middle childhood, consistent with independent, additive relations of these nonfamilial settings

    Degenerate Landau-Zener model: Exact analytical solution

    Full text link
    The exact analytical solution of the degenerate Landau-Zener model, wherein two bands of degenerate energies cross in time, is presented. The solution is derived by using the Morris-Shore transformation, which reduces the fully coupled system to a set of independent nondegenerate two-state systems and a set of decoupled states. Due to the divergence of the phase of the off-diagonal element of the propagator in the original Landau-Zener model, not all transition probabilities exist for infinite time duration. In general, apart from some special cases, only the transition probabilities between states within the same degenerate set exist, but not between states of different sets. An illustration is presented for the transition between the magnetic sublevels of two atomic levels with total angular momenta J=2 and 1

    Application of Absorbing Boundary Condition to Nuclear Breakup Reactions

    Full text link
    Absorbing boundary condition approach to nuclear breakup reactions is investigated. A key ingredient of the method is an absorbing potential outside the physical area, which simulates the outgoing boundary condition for scattered waves. After discretizing the radial variables, the problem results in a linear algebraic equation with a sparse coefficient matrix, to which efficient iterative methods can be applicable. No virtual state such as discretized continuum channel needs to be introduced in the method. Basic aspects of the method are discussed by considering a nuclear two-body scattering problem described with an optical potential. We then apply the method to the breakup reactions of deuterons described in a three-body direct reaction model. Results employing the absorbing boundary condition are found to accurately coincide with those of the existing method which utilizes discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX

    The Conservation Costs of Game Ranching

    Get PDF
    The devolution of user rights of wildlife in southern Africa has led to a widespread land-use shift from livestock farming to game ranching. The economic advantages of game ranching over livestock farming are significant, but so too are the risks associated with breeding financially valuable game where free-ranging wildlife pose a credible threat. Here, we assessed whether the conservation potential of game ranching, and a decentralized approach to conservation more generally, may be undermined by an increase in human-wildlife conflict. We demonstrate that game rancher tolerance towards free-ranging wildlife has significantly decreased as the game ranching industry has evolved. Our findings reveal a conflict of interest between wealth and wildlife conservation resulting from local decision-making in the absence of adequate centralized governance and evidence-based best practice. As a fundamental pillar of devolution-based natural resource management, game ranching proves an important mechanism for economic growth, albeit at a significant cost to conservation

    Adiabatically coupled systems and fractional monodromy

    Get PDF
    We present a 1-parameter family of systems with fractional monodromy and adiabatic separation of motion. We relate the presence of monodromy to a redistribution of states both in the quantum and semi-quantum spectrum. We show how the fractional monodromy arises from the non diagonal action of the dynamical symmetry of the system and manifests itself as a generic property of an important subclass of adiabatically coupled systems

    An intervention framework for collaboration

    Get PDF
    This paper provides an intervention framework for collaboration to improve services. When collaboration is an intervention, its development and effectiveness depend on intervention logic. Intervention logic requires a precise conceptualization of collaboration. This conceptualization emphasizes its vital and unique components. It includes a developmental progression in which collaboration is contrasted with companion concepts. It also includes progress benchmarks, outcome measures, and logic models. These models depict relations among the benchmarks and outcomes, and they identify the mediating and moderating variables that account for collaboration's development and effectiveness. These models are designed to improve planning, evaluation, and their relations. This intervention framework for collaboration contrasts sharply with other conceptualizations and strategies. Although its aim is to unify and improve collaboration policy and practice, its inherent selectivity is an obvious limitation. [PUBLICATION ABSTRACT
    • …
    corecore