82 research outputs found

    Association of Rural Setting With Poorer Disease Outcomes for Patients With Rheumatic Diseases : Results From a Systematic Review of the Literature

    Get PDF
    This work was conducted within the Versus Arthritis and Medical Research Council Centre for Musculoskeletal Health and Work although there was no specific financial support for this project. The authors have no conflict of interest to report. We acknowledge the work of Svenja Kleiser from the Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany who conducted the literature search during an internship at the Epidemiology Group, University of Aberdeen, United Kingdom.Peer reviewedPostprin

    Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis

    Get PDF
    © 2010 Cascão et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by sustained synovitis. Recently, several studies have proposed neutrophils and Th17 cells as key players in the onset and perpetuation of this disease. The main goal of this work was to determine whether cytokines driving neutrophil and Th17 activation are dysregulated in very early rheumatoid arthritis patients with less than 6 weeks of disease duration and before treatment (VERA). Methods: Cytokines related to neutrophil and Th17 activation were quantified in the serum of VERA and established RA patients and compared with other very early arthritis (VEA) and healthy controls. Synovial fluid (SF) from RA and osteoarthritis (OA) patients was also analyzed. Results: VERA patients had increased serum levels of cytokines promoting Th17 polarization (IL-1b and IL-6), as well as IL-8 and Th17-derived cytokines (IL-17A and IL-22) known to induce neutrophil-mediated inflammation. In established RA this pattern is more evident within the SF. Early treatment with methotrexate or corticosteroids led to clinical improvement but without an impact on the cytokine pattern. Conclusions: VERA patients already display increased levels of cytokines related with Th17 polarization and neutrophil recruitment and activation, a dysregulation also found in SF of established RA. 0 Thus, our data suggest that a cytokine-milieu favoring Th17 and neutrophil activity is an early event in RA pathogenesis.This work was supported by a grant from Sociedade Portuguesa de Reumatologia/Schering-Plough 2005. RAM and RC were funded by Fundação para a Ciência e a Tecnologia (FCT) SFRH/BD/30247/2006 and SFRH/BD/40513/2007, respectively. MMS-C was funded by Marie Curie Intra-European Fellowship PERG-2008-239422 and a EULAR Young Investigator Award

    Age-related changes in Serum Growth Hormone, Insulin-like Growth Factor-1 and Somatostatin in System Lupus Erythematosus

    Get PDF
    BACKGROUND: Systemic lupus erythematosus is an age- and gender-associated autoimmune disorder. Previous studies suggested that defects in the hypothalamic/pituitary axis contributed to systemic lupus erythematosus disease progression which could also involve growth hormone, insulin-like growth factor-1 and somatostatin function. This study was designed to compare basal serum growth hormone, insulin-like growth factor-1 and somatostatin levels in female systemic lupus erythematosus patients to a group of normal female subjects. METHODS: Basal serum growth hormone, insulin-like growth factor-1 and somatostatin levels were measured by standard radioimmunoassay. RESULTS: Serum growth hormone levels failed to correlate with age (r(2 )= 3.03) in the entire group of normal subjects (i.e. 20 – 80 years). In contrast, serum insulin-like growth factor-1 levels were inversely correlated with age (adjusted r(2 )= 0.092). Of note, serum growth hormone was positively correlated with age (adjusted r(2 )= 0.269) in the 20 – 46 year range which overlapped with the age range of patients in the systemic lupus erythematosus group. In that regard, serum growth hormone levels were not significantly higher compared to either the entire group of normal subjects (20 – 80 yrs) or to normal subjects age-matched to the systemic lupus erythematosus patients. Serum insulin-like growth factor-1 levels were significantly elevated (p < 0.001) in systemic lupus erythematosus patients, but only when compared to the entire group of normal subjects. Serum somatostatin levels differed from normal subjects only in older (i.e. >55 yrs) systemic lupus erythematosus patients. CONCLUSIONS: These results indicated that systemic lupus erythematosus was not characterized by a modulation of the growth hormone/insulin-like growth factor-1 paracrine axis when serum samples from systemic lupus erythematosus patients were compared to age- matched normal female subjects. These results in systemic lupus erythematosus differ from those previously reported in other musculoskeletal disorders such as rheumatoid arthritis, osteoarthritis, fibromyalgia, diffuse idiopathic skeletal hyperostosis and hypermobility syndrome where significantly higher serum growth hormone levels were found. Somatostatin levels in elderly systemic lupus erythematosus patients may provide a clinical marker of disease activity in these patients

    Regulation of Intestinal Immune Response by Selective Removal of the Anterior, Posterior, or Entire Pituitary Gland in Trichinella spiralis Infected Golden Hamsters

    Get PDF
    The influence of anterior pituitary hormones on the gastrointestinal tract of humans and animals has been previously reported. Hypophysectomy (HYPOX) in the rat causes atrophy of the intestinal mucosa, and reduction of gastric secretion and intestinal absorption, as well as increased susceptibility to bacterial and viral infections. However, to our knowledge, no findings have been published concerning the immune response following HYPOX during worm infection, particularly that which is caused by the nematode Trichinella spiralis. The aim of this work was to analyze the effects of total or partial HYPOX on colonization of T. spiralis in the intestinal lumen, together with duodenal and splenic cytokine expression. Our results indicate that 5 days post infection, only neurointermediate pituitary lobectomy (NIL) reduces the number of intestinally recovered T. spiralis larvae. Using semiquantitative inmunofluorescent laser confocal microscopy, we observed that the mean intensity of all tested Th1 cytokines was markedly diminished, even in the duodenum of infected controls. In contrast, a high level of expression of these cytokines was noted in the NIL infected hamsters. Likewise, a significant decrease in the fluorescence intensity of Th2 cytokines (with the exception of IL-4) was apparent in the duodenum of control and sham infected hamsters, compared to animals with NIL surgeries, which showed an increase in the expression of IL-5 and IL-13. Histology of duodenal mucosa from NIL hamsters showed an exacerbated inflammatory infiltrate located along the lamina propria, which was related to the presence of the parasite. We conclude that hormones from each pituitary lobe affect the gastrointestinal immune responses to T. spiralis through various mechanisms

    Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD38 is expressed in human airway smooth muscle (HASM) cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α). CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene.</p> <p>Methods</p> <p>We cloned a putative 3 kb promoter fragment of the human <it>cd38 </it>gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative <it>cd38 </it>promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE) motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies.</p> <p>Results</p> <p>TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to some of the putative <it>cd38 </it>GREs by dexamethasone.</p> <p>Conclusion</p> <p>The EMSA results and the cd38 promoter-reporter assays confirm the functional role of NF-κB, AP-1 and GREs in the cd38 promoter in the transcriptional regulation of CD38.</p

    Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model

    Get PDF
    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs

    Sleep and immune function

    Get PDF
    Sleep and the circadian system exert a strong regulatory influence on immune functions. Investigations of the normal sleep–wake cycle showed that immune parameters like numbers of undifferentiated naïve T cells and the production of pro-inflammatory cytokines exhibit peaks during early nocturnal sleep whereas circulating numbers of immune cells with immediate effector functions, like cytotoxic natural killer cells, as well as anti-inflammatory cytokine activity peak during daytime wakefulness. Although it is difficult to entirely dissect the influence of sleep from that of the circadian rhythm, comparisons of the effects of nocturnal sleep with those of 24-h periods of wakefulness suggest that sleep facilitates the extravasation of T cells and their possible redistribution to lymph nodes. Moreover, such studies revealed a selectively enhancing influence of sleep on cytokines promoting the interaction between antigen presenting cells and T helper cells, like interleukin-12. Sleep on the night after experimental vaccinations against hepatitis A produced a strong and persistent increase in the number of antigen-specific Th cells and antibody titres. Together these findings indicate a specific role of sleep in the formation of immunological memory. This role appears to be associated in particular with the stage of slow wave sleep and the accompanying pro-inflammatory endocrine milieu that is hallmarked by high growth hormone and prolactin levels and low cortisol and catecholamine concentrations

    Reciprocal interactions between the neuroendocrine and immune systems during inflammation.

    No full text
    The neuroendocrine and immune responses to inflammatory stress represent important integrated physiologic circuits for the regulation of inflammation whose basis has been reviewed. Proinflammatory cytokines such as IL-1 beta, TNF alpha, and IL-6 released from inflammatory foci initiate a local inflammatory response and travel by way of the blood-stream to the central nervous system, where they trigger a variety of neuroendocrine counterregulatory mechanisms. There is an important NEI loop. Stimulatory signals are received by the neural systems from inflammatory foci and are transduced by the hypothalamus, thereby initiating a complex hormonal and cytokine cascade of reactions aimed at modulating inflammation and returning the organism to normal physiologic homeostasis once the trigger has been neutralized. Conversely, a number of mechanisms that modulate the anti-inflammatory activity of the neuroendocrine responses to inflammation are also activated. Defects in the neuroendocrine-immune interactions can profoundly affect the susceptibility to developing chronic inflammatory disease and influencing survival after bacterial infections. The NEI loop has important pathophysiologic implications for disease processes

    Neuroendocrine immune responses to inflammation: the concept of the neuroendocrine immune loop.

    No full text
    The neuroendocrine and immune responses to inflammatory stress represents an integrated circuit whose basis is reviewed in this chapter. Pro-inflammatory cytokines such as IL-1 beta, TNF-alpha and IL-6 released from inflammatory foci initiate local anti-inflammatory mechanisms and travel via the blood stream to the brain where they trigger a variety of neuroendocrine counter-regulatory mechanisms. There is therefore an important neuroendocrine-immune loop in which stimulatory signals are received by the neural systems from inflammatory foci. These signals are transduced by the hypothalamus which initiates a complex hormonal cascade reaction aimed at modulating inflammation and returning the organism to normal physiological homeostasis once the trigger has been neutralized. Abnormalities in this cross-talk can profoundly influence the susceptibility to developing chronic inflammatory disease. Thus, in conclusion, the neuroendocrine-immune loop has important pathophysiological implications for disease processes
    corecore